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U Introduction, Let distinct points Sn = {znl, zn2, , znn} be given
on the unit circle | z | = 1 in the complex 2-plane, let a function / also
be given on | z | = 1, and let Ln — Ln(f; z) denote the polynomial of degree
at most n — 1 found by interpolation to / at the points Sn. Consider
an infinite sequence of such point sets, Slf S2f , Sn, , and the cor-
responding sequence Ll9 L2, , Ln, . If the union of the sets Sn is
everywhere dense on \z\ = 1, does lim^ooLn(f; z) exist for | z | < 1, and
if so, what is it?

Walsh [14, pp. 178-180] proved that if the points Sn are equally
spaced for each n, and if / is Riemann integrable, then

(1.1)
2πι)\t\=i t — z

uniformly on any closed point set on the region | z \ < 1. The present
author [1] [2] generalized Walsh's result to the case of interpolation on
a more or less arbitrary Jordan curve. The problem for equally spaced
interpolation points has a pedigree of some length which is described in
Walsh's book [14] and in a recent survey given by the author [3].

When the points Sn are not equally spaced, very little is known
about the behavior of Ln unless / is analytic on | z | ^ 1. For the analytic
case Fejer [4] proved that if the points Sn are equidistributed on an
arbitrary Jordan curve C in a sense to be described below in §2 and
if / is analytic on the closed region D bounded by C then Ln-^f uni-
formly on D. No result of this sort involving equidistribution is at
present known for nonanalytic functions / even when C is the unit
circle.1 It is the purpose of this paper to try to shed some light on
the situation for nonequally spaced points by means of a probabilistic
treatment. We shall let the points of the sequence Si, Sa, be random
variables defined on a probability space with a structure such that almost
certainly a sample sequence is equidistributed. (We use the word
"equidistributed" here in connection with sample sequences rather than
the more usual words "uniformly distributed" to avoid confusion with
the concept of a uniform distribution in the probability sense.) The
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1 Zygmund [16, vol. II, pp. 3-4] points out that a similar gap exists in the theory of
trigonometric interpolation.
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