A NOTE ON HYPONORMAL OPERATORS

STERLING K. BERBERIAN

The last exercise in reference [4] is a question to which I did not know the answer: does there exist a hyponormal $(TT^* \leq T^*T)$ completely continuous operator which is not normal? Recently Tsuyoshi Andô has answered this question in the negative, by proving that every hyponormal completely continuous operator is necessarily normal ([1]). The key to Andô's solution is a direct calculation with vectors, showing that a hyponormal operator T satisfies the relation $||T^n|| = ||T||^n$ for every positive integer n (for "subnormal" operators, this was observed by P.R. Halmos on page 196 of [6]). It then follows, from Gelfand's formula for spectral radius, that the spectrum of T contains a scalar μ such that $|\mu| = ||T||$ (see [9], Theorem 1.6.3.).

The purpose of the present note is to obtain this result from another direction, via the technique of approximate proper vectors ([3]); ⁱⁿ this approach, the nonemptiness of the spectrum of a hyponormal operator T is made to depend on the elementary case of a self-adjoint operator, and a simple calculation with proper vectors leads to a scalar μ in the spectrum of T such that $|\mu| = ||T||$. This is the Theorem below, and its Corollaries 1 and 2 are due also to Andô. In the remaining corollaries, we note several applications to completely continuous operators.

We consider operators (=continuous linear mappings) defined in a Hilbert space. As in [3], the spectrum of an operator T is denoted s(T), and the approximate point spectrum is a(T). We note for future use that every boundary point of s(T) belongs to a(T); see, for example, ([4], hint to Exercise VIII. 3.4).

LEMMA 1. Suppose T is a hyponormal operator, with $||T|| \leq 1$, and let \mathscr{M} be the set of all vectors which are fixed under the operator TT^* . Then,

- (i) *M* is a closed linear subspace,
- (ii) the vectors in \mathcal{M} are fixed under T^*T ,
- (iii) \mathcal{M} is invariant under T, and
- (iv) the restriction of T to \mathcal{M} is an isometric operator in \mathcal{M} .

Proof. Since $\mathscr{M} = \{x : TT^*x = x\}$ is the null space of $I - TT^*$, it is a closed linear subspace. The relation $TT^* \leq T^*T \leq I$ implies $0 \leq I - T^*T \leq I - TT^*$, and from this it is clear that the null space of $I - TT^*$ is contained in the null space of $I - T^*T$. That is, $TT^*x = x$

Received February 27, 1962.