A NOTE ON HYPONORMAL OPERATORS

Sterling K. Berberian

The last exercise in reference [4] is a question to which I did not know the answer: does there exist a hyponormal ($T T^{*} \leqq T^{*} T$) completely continuous operator which is not normal? Recently Tsuyoshi Andô has answered this question in the negative, by proving that every hyponormal completely continuous operator is necessarily normal ([1]). The key to Andô's solution is a direct calculation with vectors, showing that a hyponormal operator T satisfies the relation $\left\|T^{n}\right\|=\|T\|^{n}$ for every positive integer n (for "subnormal" operators, this was observed by P. R. Halmos on page 196 of [6]). It then follows, from Gelfand's formula for spectral radius, that the spectrum of T contains a scalar μ such that $|\mu|=\|T\|$ (see [9], Theorem 1.6.3.).

The purpose of the present note is to obtain this result from another direction, via the technique of approximate proper vectors ([3]); i_{n} this approach, the nonemptiness of the spectrum of a hyponormal operator T is made to depend on the elementary case of a self-adjoint operator, and a simple calculation with proper vectors leads to a scalar μ in the spectrum of T such that $|\mu|=\|T\|$. This is the Theorem below, and its Corollaries 1 and 2 are due also to Andô. In the remaining corollaries, we note several applications to completely continuous operators.

We consider operators (=continuous linear mappings) defined in a Hilbert space. As in [3], the spectrum of an operator T is denoted $s(T)$, and the approximate point spectrum is $\alpha(T)$. We note for future use that every boundary point of $s(T)$ belongs to $a(T)$; see, for example, ([4], hint to Exercise VIII. 3.4).

Lemma 1. Suppose T is a hyponormal operator, with $\|T\| \leqq 1$, and let \mathscr{M} be the set of all vectors which are fixed under the operator $T T^{*}$. Then,
(i) \mathscr{M} is a closed linear subspace,
(ii) the vectors in \mathscr{M} are fixed under $T^{*} T$,
(iii) \mathscr{M} is invariant under T, and
(iv) the restriction of T to \mathscr{M} is an isometric operator in \mathscr{M}.

Proof. Since $\mathscr{M}=\left\{x: T T^{*} x=x\right\}$ is the null space of $I-T T^{*}$, it is a closed linear subspace. The relation $T T^{*} \leqq T^{*} T \leqq I$ implies $0 \leqq I-T^{*} T \leqq I-T T^{*}$, and from this it is clear that the null space of $I-T T^{*}$ is contained in the null space of $I-T^{*} T$. That is, $T T^{*} x=x$

[^0]
[^0]: Received February 27, 1962.

