BANACH ALGEBRAS OF LIPSCHITZ FUNCTIONS

Donald R. Sherbert

1. Lip (X, d) will denote the collection of all bounded complexvalued functions defined on the metric space (X, d) that satisfy a Lipschitz condition with respect to the metric d. That is, Lip (X, d) consists of all f defined on X such that both

$$
\|f\|_{\infty}=\sup \{|f(x)|: x \in X\}
$$

and

$$
\|f\|_{a}=\sup \{|f(x)-f(y)| / d(x, y): x, y \in X, x \neq y\}
$$

are finite. With the norm $\|\cdot\|$ defined by $\|f\|=\|f\|_{\infty}+\|f\|_{d}, \operatorname{Lip}(X, d)$ is a Banach algebra. We shall sometimes refer to such an algebra as a Lipschitz algebra. In this paper we investigate some of the basic properties of these Banach algebras.

It will be assumed throughout the paper that (X, d) is a complete metric space. There is no loss of generality in doing so : for suppose (X, d) were not complete and let (X^{\prime}, d^{\prime}) denote its completion. Since each element of $\operatorname{Lip}(X, d)$ is uniformly continuous on (X, d), it extends uniquely and in a norm preserving way to an element of $\operatorname{Lip}\left(X^{\prime}, d^{\prime}\right)$. Thus as Banach algebras, $\operatorname{Lip}(X, d)$ and $\operatorname{Lip}\left(X^{\prime}, d^{\prime}\right)$ are isometrically isomorphic.

In § 2 we sketch briefly the main points of the Gelfand theory and observe that every commutative semi-simple Banach algebra A is isomorphic to a subalgebra of the Lipschitz algebra $\operatorname{Lip}(\Sigma, \sigma)$, where Σ is the carrier space of A and σ is the metric Σ inherits from being a subset of the dual space A^{*} of A. This representation is obtained from the Gelfand representation; instead of using the usual Gelfand (relative weak*) topology of Σ, the metric topology is used. Later, in §4, we show that this isomorphism is onto if and only if $A=\operatorname{Lip}(X, d)$ for a compact (X, d).

In § 3 we study the carrier space Σ of $\operatorname{Lip}(X, d)$. The fact that $\operatorname{Lip}(X, d)$ is a point separating algebra of functions on X allows us to identify X as a subset of Σ. The topologies X inherits from Σ are compared to the original d-topology; they are shown to be equivalent and in the case of the two metric topologies we show them to be equivalent in a strong sense. In Theorem 3.9 we show that the important case of $\Sigma=X$ is equivalent to (X, d) being compact,

[^0]
[^0]: Received November 14, 1962. This paper is based on a portion of the author's Ph. D. dissertation written at Stanford University under the supervision of Professor Karel de Leeuw.

