CHAINS AND GRAPHS OF OSTROM PLANES

J. D. Swift

1. In 1961, in a letter to D. Hughes, T. G. Ostrom communicated a process that, as developed by Hughes and set forth by A. A. Albert [1], transformed a projective plane of a particular type into another using a coordinatizing ring of the first as a tool. This process may be modified to make more direct use of the algebra to a point where, indeed, it may be employed to create new rings out of old without the mediation of a plane. On the other hand the process may be dualized to alleviate a disadvantage of the essentially involutory nature of the original; from a given initial plane the Ostrom process gives one new plane; if repeated the original plane results. In the process to be discussed below a number of planes result, and, in particular, from a Desarguesian plane of order at least 9 , three others, the Hall plane, its dual, and a self-dual plane make a complete set. Recently, Ostrom has published in [5] a development of his original process. We shall refer primarily to [1] as it more directly affects the development of the results to be presented.
2. First we establish some notation: Let π be a finite projective plane coordinatized by a ternary ring R whose additive structure is a group. For purposes of symmetry, we modify the usual notation and denote by $y=x \cdot m \circ b$ the line through the point (m) of L_{∞} and the point $(0,-b)$. Let π^{*} be the dual of π and let it be coordinatized by R^{*} where R^{*} is defined by $b=m \cdot x \circ y$ in R^{*} when $y=x \cdot m \circ b$ in R. We note that, if π (and R) are such that $x \cdot m \circ b=x m-b$ for all x, m, b, then R^{*} is just the multiplicative mirror image of R and if, further, R is commutative, $R=R^{*}$.

Second we assume some additional restrictions on R (and thereby on R^{*}, π, and π^{*}).
(a) The additive structure of R is that of an abelian group.
(b) R is a vector space of dimension 2 over a field K whose elements commute with all elements of R in the standard binary multiplication in R.
(c) For $a, b \in R, \alpha, \delta \in K$,

$$
\begin{aligned}
\alpha(\delta a) & =(\alpha \delta) a \\
(\alpha+\delta) a & =\alpha a+\delta a \\
\alpha(a+b) & =\alpha a+\alpha b \\
a \cdot \alpha \circ b=a \alpha-b & =\alpha a-b=\alpha \cdot a \circ b
\end{aligned}
$$

Received April 2, 1963.

