ON THE DIOPHANTINE EQUATION $C x^{2}+D=y^{n}$

W. Luungaren

1. Introduction. Let C, D and n denote odd positive integers, $D>1$ and $C D$ without any squared factor >1. Let $K=Q(\sqrt{-C D})$, where Q is the field of rational numbers. Let further h denote the number of classes of ideals in K and put $D+(-1)^{(D+1) / 2}=2^{m} \cdot D_{1}$, $\left(D_{1}, 2\right)=1$. In two previous papers [4] and [5] I have proved the following three theorems concerning the diophantine equation $C x^{2}+D=$ y^{n} :
I. The diophantine equation

$$
\begin{equation*}
C x^{2}+D=y^{n}, \quad n>1 \tag{1}
\end{equation*}
$$

is impossible in rational integers x and y if $h \not \equiv 0(\bmod n), m$ is odd and either $C D \equiv 1(\bmod 4)$ or $C D \equiv 3(\bmod 8)$ with $n \not \equiv 0(\bmod 3)$.
II. The diophantine equation

$$
\begin{equation*}
C x^{2}+D=y^{q}, \quad q>3 \tag{2}
\end{equation*}
$$

where q denote an odd prime and $C D \not \equiv 7(\bmod 8)$, is impossible in rational integers x and y if $h \not \equiv 0(\bmod q), m$ is even and $q \not \equiv C D_{1}$ $(\bmod 8)$.
III. If $D \equiv 1(\bmod 4), C D \not \equiv 7(\bmod 8)$ and m is even, then the equation (2) has only a finite number of solutions in natural numbers x, y and primes q if $C D_{1} \equiv 5(\bmod 8)$ or if $C=1$ with $D_{1} \equiv 3(\bmod 8)$ for given C and D. The possible values of y and an upper limit for the number of primes q may always be determined after a finite number of arithmetical operations.

From the proofs it immediately follows that these theorems also hold good if $C D \equiv 7(\bmod 8)$, provided y is an odd integer. This gives a far-reaching extension of results obtained by D. J. Lewis in his paper [2]. Putting $C=1, D=7$ we find, from 1:

The diophantine equation $x^{2}+7=y^{z}, z>1$, is impossible in rational integers x, y and z if y is an odd integer.

Equations of the type (1) have also been studied by T. Nagell [6], [8], [9] and B. Stolt [11].

[^0]
[^0]: Received July 2, 1963.

