MONOTONE APPROXIMATION

O. SHISHA

How close can one approximate a monotone function by a monotone polynomial of degree $\leq n$, or a convex function by a convex polynomial of degree $\leq n$? This leads to the following general question. Let k and n be given, and suppose a real fuction f satisfies $f^{(k)}(x) \geq 0$ throughout a closed, finite interval [a, b]. How close can one approximate f on [a, b] by a polynomial of degree $\leq n$ whose kth derivative, too, is ≥ 0 there? We give an answer to the question.

2. THEOREM 1. Let k and p be integers, $1 \leq k \leq p$, and let a real function f satisfy throughout [a, b]

$$f^{\,_{(k)}}(x)\geqq 0 \;, \ |f^{\,_{(p)}}(x_2)-f^{\,_{(p)}}(x_1)| \leqq \lambda \, |\, x_2-x_1| \;,$$

 λ being a constant. Then for every integer $n(\geq p)$ there exists a real polynomial $Q_n(x)$ of degree¹ $\leq n$ such that

(a) $Q_n^{(k)}(x) \ge 0$ throughout [a, b],

(b)
$$\max_{a \le x \le b} |f(x) - Q_n(x)| \le 2\lambda \left(\frac{\pi}{4}\right)^{p-k+1} (b-a)^{p+1} \left[k! \prod_{\nu=k}^p (n+1-\nu)\right]^{-1}$$

3. To prove Theorem 1, we begin by quoting the following result of J. Favard [2] and N. Ahiezer and M. Krein [1] which strengthens a previous result of D. Jackson.

THEOREM 2. (Favard, Ahiezer-Krein) Let f (with period 2π) map the reals into the reals, and satisfy for every real x_1, x_2

$$|f(x_2) - f(x_1)| \leq \lambda |x_2 - x_1|$$
 ,

 λ being a constant. Then for $n = 0, 1, 2, \cdots$, there exists a trigonometric polynomial $T_n(x) \equiv \sum_{\nu=0}^n a_{\nu}^{(n)} \cos \nu x + b_{\nu}^{(n)} \sin \nu x$ such that $\max_{0 \leq x \leq 2\pi} |f(x) - T_n(x)| \leq \lambda(\pi/2)[1/(n+1)].$

From Theorem 2 one obtains by the method of [3], pp. 13-14 the following

THEOREM 3. Let f be a real function satisfying (1) throughout $[a, b], \lambda$ being a constant. Then for $n = 0, 1, 2, \dots$, there exists a

Received March 17, 1964.

 $^{^{1}}$ By degree of a polynomial we mean its exact degree. (The degree of the polynomial 0 is -1).