REMARKS ON SIMPLE EXTENDED LIE ALGEBRAS

Abstract

Arthur A. Sagle We continue the discussion of finite dimensional simple extended Lie algebras over an algebraically closed field F of characteristic zero with nondegenerate form $(x, y)=$ trace $R_{x} R_{y}$ where R_{x} (or $R(x)$) denotes the mapping $A \rightarrow A: a \rightarrow a x$; for brevity we call such an algebra a simple el-algebra. The main result of this paper is that those simple el-algebras which are not Lie or Malcev algebras probably cannot be analyzed by the usual desirable Lie-type methods.

First if we assume the simple el-algebra [3] A has a diagonalizable Cartan subalgebra [3] such that for any weight space $A(N, \alpha)$ of N in A we have $A(N, \alpha)^{2}=0$ or $A(N, \alpha)^{2} \subset A(N, \beta)$ for some weight β (which is a function of α), then A is a Lie or Malcev algebra. Thus if one attempts to remedy the situation that $A(N, \alpha)^{2}$ is difficult to locate by the rather desirable above assumptions and tries to construct a multiplication table for a new simple el-algebra, then actually nothing new is obtained. Next we show that if the derivation algebra $D(A)$ is used to analyze a simple el-algebra, using [1, page 54] or possibly Lie module theory, then again a difficult situation is encountered: If A is simple el-algebra, then A is not a simple Lie or Malcev algebra if and only if there exists a nonzero element $a \in A$ such that for every derivation $D \in D(A)$ we have $a D=0$. The element $a \in A$ reflects the structure of A and so it appears that the structure of A is not accurately reflected in its derivation albgebra.

The proofs of the above results use the following lemma.
Lemma 1.1. If A is a simple el-algebra, then A is a Lie or 7-dimensional Malcev algebra if and only if $u(x)=$ trace R_{x} is the zero linear functional.

Proof. A linearization of the defining identities of an extended Lie algebra

$$
x y=-y x \quad \text { and } \quad J(x y, x, y)=0
$$

where $J(x, y, z)=x y \cdot z+y z \cdot x+z x \cdot y$ yields

$$
\begin{equation*}
J(w x, y, z)+J(y z, w, x)=J(w y, z, x)+J(z x, w, y) \tag{1.2}
\end{equation*}
$$

[^0]
[^0]: Received November 7, 1963. This research was supported in part by NSF Grant GP-1453.

