ON A CLASS OF CAUCHY EXPONENTIAL SERIES

J. A. ANDERSON AND G. H. FULLERTON

This paper was received before the synoptic introduction became a requirement.

1. Introduction. Let Q(z) be a meromorphic function with poles z_1, z_2, z_3, \cdots , the notation being so chosen that $|z_1| \leq |z_2| \leq |z_3| \leq \cdots$. If $f \in L(0, 1)$, define

$$c_{z}e^{z_{y}x}=\operatorname{res}_{z_{y}}Q(z)\int_{0}^{1}f(t)e^{z(x-t)}dt$$
 .

Then, the series $\Sigma c_{\nu} e^{z_{\nu} x}$ is called the Cauchy Exponential Series (CES) of f with respect to Q(z). If z_{ν} is of multiplicity m, then c_{ν} is a polynomial in x of degree at most m-1; if the poles are all simple, with residue λ_{ν} at z_{ν} , we may write

(1)
$$c_{\nu} = \lambda_{\nu} \int_{0}^{1} f(t) e^{-z_{\nu}t} dt$$

and $\{c_{\nu}\}$, independent of x, are called the CE constants.

Let $C_p: |z| = r_p$ be an expanding sequence of contours, none of which passes through a pole of Q(z). Suppose C_p contains n_p poles of Q(z). Then,

$$\sum\limits_{
u=1}^{n_p} c_
u e^{z_
u x} = rac{1}{2\pi i} \int_{\sigma_p} Q(z) dz \int_0^1 f(t) e^{z(x-t)} dt \; ,$$
 $= I_p \; , \quad ext{say } .$

Denote by C_p^+ , C_p^- the parts of C_p lying in the right, left half-planes respectively. If Q(z) is approximately unity on C_p^+ , and is small on C_p^- , in the sense that

(2)
$$\int_{o_p^+} (Q(z) - 1) dz \int_0^1 f(t) e^{z(x-t)} dt = o(1)$$

(3)
$$\int_{o_{p}^{-}} Q(z) dz \int_{0}^{1} f(t) e^{z(z-t)} dt = o(1)$$

as $p \to \infty$, uniformly for $x \in [0, 1]$, then

$$egin{aligned} &I_p = rac{1}{2\pi i} \int_{\sigma_p^+} dz \int_0^1 f(t) e^{z(x-t)} dt + o(1) \ &= rac{1}{\pi} \int_0^1 rac{f(t) \sin r_p(x-t)}{x-t} dt + o(1) \end{aligned}$$

Received March 4, 1963.