A COUNTER-EXAMPLE TO A LEMMA OF SKORNJAKOV

B. L. Osofsky

Abstract

In his paper, Rings with injective cyclic modules, translated in Soviet Mathematics 4 (1963), p. 36-39, L. A. Skornjakov states the following lemma: If a cyclic R-module M and all its cyclic submodules are injective, then the partially ordered set of cyclic submodules of \mathbf{M} is a complete, complemented lattice.

An example is constructed to show that this lemma is false, thus invalidating Skornjakov's proof of the theorem: Let R be a ring all of whose cyclic modules are injective. Then R is semi-simple Artin. The theorem, however, is true. (See Osofsky [4].)

The theorem, however, is true. (See Osofsky [4].)
In this paper, all rings have identity and all modules are unital left modules. ${ }_{R} \mathfrak{M}$ will denote the category of R-modules, and ${ }_{R} M$ will signify $M \in \in_{R} \mathbb{M}$.

Let Q be a commutative, left self injective, regular, non-Artin ring, and let I be a maximal ideal of Q which is not a direct summand of ${ }_{Q} Q$. (For example, let Q be a direct product of fields, and I a maximal ideal containing their direct sum.) Let $N=Q \oplus Q / I$. We observe the following:

1. ${ }_{Q} N$ is injective. Q is injective by hypothesis, and Q / I is a simple module over the commutative regular ring Q; hence injective by a theorem of Kaplansky. (See [5].)
2. ${ }_{Q} M \subseteq{ }_{Q} N$ is a direct summand of ${ }_{Q} N$ if and only if ${ }_{Q} M$ is finitely generated. If ${ }_{Q} M$ is a direct summand of ${ }_{Q} N,{ }_{Q} M$ is generated by the projections of $(1,0+I)$ and $(0,1+I)$. If ${ }_{Q} M$ is finitely generated, and π is the projection of N onto $(Q, 0+I)$, then $\pi\left({ }_{Q} M\right)$ is finitely generated. Hence $\pi\left({ }_{Q} M\right)$ is a direct summand of ${ }_{Q} Q$. (See von Neumann [6].) Say $Q=\pi\left({ }_{Q} M\right) \oplus K$. Since $\pi\left({ }_{Q} M\right)$ is projective (it is a direct summand of $Q),{ }_{Q} M=\left(\pi\left({ }_{Q} M\right)\right)^{\prime} \oplus\left(\operatorname{Ker} \pi \cap_{Q} M\right)$. Since Q / I is simple, $Q / I=\left(\operatorname{Ker} \pi \cap_{Q} M\right) \oplus K_{2}$ where $K_{2}=0$ or Q / I. Then $N=M \oplus K \oplus K_{2}$.
3. The direct summands of N do not form a lattice. In particular, $Q(1,0+I) \cap Q(1,1+I)=(I, 0+I)$ is not a direct summand
[^0]
[^0]: Received August 5, 1964 and in revised form March 18, 1965. The author gratefully acknowledges support from the National Science Foundation under grant GP-1741. The author wishes to thank the referee for simplifying and clarifying her original example, and for several very constructive suggestions on the presentation.

