A SUBDETERMINANT INEQUALITY

Marvin Marcus ${ }^{1}$ and Henryk Minc ${ }^{2}$

Let A be an n-square positive semi-definite hermitian matrix and let $D_{m}(A)$ denote the maximum of all order m principal subdeterminants of A. In this note we prove the inequality

$$
\left(D_{m}(A)\right)^{1 / m} \geqq\left(D_{m+1}(A)\right)^{1 /(m+1)}, \quad m=1, \cdots, n-1,
$$

and discuss in detail the case of equality. This result is closely related to Newton's and Szász's inequalities.

Let $A=\left(\alpha_{i j}\right)$ be an n-square positive semi-definite hermitian matrix with eigenvalues $\lambda_{1} \geqq \cdots \geqq \lambda_{n} \geqq 0$. We introduce some notation. For $1 \leqq m \leqq n$ let $Q_{m, n}$ denote the set of all $\binom{n}{m}$ sequences $\omega=\left(\omega_{1}, \cdots, \omega_{m}\right)$, $1 \leqq \omega_{1}<\omega_{2}<\cdots<\omega_{m} \leqq n$. Let $A[\omega \mid \omega]$ denote the m-square submatrix of A whose (i, j) entry is $\alpha_{\omega_{i} \omega_{j}}, i, j=1, \cdots, m$.

Theorem. If A is a positive semi-definite hermitian matrix then

$$
\begin{align*}
& \max _{\alpha \in Q_{m} n}(\operatorname{det}(A[\alpha \mid \alpha]))^{1 / m} \tag{1}\\
& \quad \geqq \max _{\omega \in Q_{m+1, n}}(\operatorname{det}(A[\omega \mid \omega]))^{1 / m+1}, \quad m=1, \cdots, n-1 .
\end{align*}
$$

Equality holds for a given m if and only if either A has rank less than m or $A\left[\omega^{0} \mid \omega^{0}\right]$ is a multiple of the identity, where the sequence $\omega^{0} \in Q_{m+1, n}$ is one that satisfies

$$
\operatorname{det}\left(A\left[\omega^{0} \mid \omega^{0}\right]\right)=\max _{\omega \in Q_{m+1 n}} \operatorname{det} A[\omega \mid \omega]
$$

There are two classical results that are closely related to the inequalities (1). These are Szász's inequalities and the Newton inequalities. Szász proved that [1, p. 119]

$$
\begin{align*}
& \left(\prod_{a \in Q_{m n}}(\operatorname{det}(A[\alpha \mid \alpha]))^{\left.1 /\left(\frac{n}{m}\right)\right)^{1 / m}}\right. \tag{3}\\
& \quad \geqq\left(\prod_{\omega \in Q_{m+1, n}}(\operatorname{det}(A[\omega \mid \omega]))^{1 /\left(m_{m+1}^{n}\right)}\right)^{1 /(m+1)}
\end{align*}
$$

Newton's inequalities [1, p. 106] state that if $E_{m}(A)$ is the m th elementary symmetric function of the nonnegative numbers $\lambda_{1}, \cdots, \lambda_{n}$ then

[^0]
[^0]: Received August 27, 1964.
 ${ }^{1}$ The research of this author was supported by N. S. F. Grant G. P. 1085.
 ${ }^{2}$ The research of this author was supported by U.S. Air Force Grant No. AF-AFOSR-432-63.

