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DEVELOPMENT OF THE MAPPING
FUNCTION AT A CORNER

Neil M. Wigley

Let D be a domain in the plane which is partially bounded
by two curves A. and Γ2 which meet at the origin and form
there an interior angle πτ > 0. Let N be an integer ^ 2 and
let a be a real number such that 0 < a < 1. Suppose that for
ί — 1,2, Γi admits a parametrization x = Xi(t), y = Vi(t), 0 ̂  t ^ 1,
where Xi and yι have Nth. derivatives which are uniformly a
Holder continuous, and | Xi(t) \ + | y[(t) \ > 0. Let F(z) map the
upper half plane conf ormally onto D in such a way that F(0) =
0. Then if τ is irrational F(z) has an asymptotic expansion in
powers of z and zτ

9 with error term o(zNτ~*). If τ = p/<7, a
reduced fraction, then F(^) has an asymptotic expansion in
powers of z,zτ, and zp logz, with error term o(zNτ~2). In both
cases ε is an arbitrarily small positive number. Furthermore
expansions for derivatives of F{z) of order ^ N may be ob-
tained by differentiating formally.

The behavior of such conformal maps at corners was first investi-
gated by Lichtenstein [9]. Let F~\z) be the function inverse to F(z)
which maps D onto the upper half plane. Lichtenstein showed that
if Γ1 and Γ2 are analytic then

(1.1) §-F~^) = z^Φ)
dz

where φ(z) is continuous in D and φ(0) Φ 0. This result was later
generalized in two ways. One was to weaken the requirements on
Γ1 and Γ2. It follows from the work of Kellogg [4] and Warschawski
[10] that with very modest conditions imposed on Γ1 and Γ2 one has

where again φ(z) is continuous in D and φ(0) Φ 0. In particular this
follows if one assumes that Γ1 and Γ2 have continuously turning tan-
gents in a neighborhood of the origin (though weaker conditions will
suffice).

The other generalization of Lichtenstein5s theorem was an improve-
ment of the result (1.1), maintaining the analyticity requirement. For
the case τ = 1 Lewy [8] showed that F(z) has an asymptotic expansion
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