DEVELOPMENT OF THE MAPPING FUNCTION AT A CORNER

Neil M. Wigley

Let D be a domain in the plane which is partially bounded by two curves Γ_{1}. and Γ_{2} which meet at the origin and form there an interior angle $\pi \tau>0$. Let N be an integer $\geqq 2$ and let α be a real number such that $0<\alpha<1$. Suppose that for $i=1,2, \Gamma_{i}$ admits a parametrization $x=x_{i}(t), y=y_{i}(t), 0 \leqq t \leqq 1$, where x_{i} and y_{i} have N th derivatives which are uniformly α Hölder continuous, and $\left|x_{i}^{\prime}(t)\right|+\left|y_{i}^{\prime}(t)\right|>0$. Let $F(z)$ map the upper half plane conformally onto D in such a way that $F(0)=$ 0 . Then if τ is irrational $F(z)$ has an asymptotic expansion in powers of z and z^{τ}, with error term $o\left(z^{N \tau-\varepsilon}\right)$. If $\tau=p / q$, a reduced fraction, then $F(z)$ has an asymptotic expansion in powers of z, z^{τ}, and $z^{p} \log z$, with error term $o\left(z^{N \tau-\varepsilon}\right)$. In both cases ε is an arbitrarily small positive number. Furthermore expansions for derivatives of $F(z)$ of order $\leqq N$ may be obtained by differentiating formally.

The behavior of such conformal maps at corners was first investigated by Lichtenstein [9]. Let $F^{-1}(z)$ be the function inverse to $F(z)$ which maps D onto the upper half plane. Lichtenstein showed that if Γ_{1} and Γ_{2} are analytic then

$$
\begin{equation*}
\frac{d}{d z} F^{-1}(z)=z^{1 / \tau-1} \varphi(z) \tag{1.1}
\end{equation*}
$$

where $\varphi(z)$ is continuous in \bar{D} and $\varphi(0) \neq 0$. This result was later generalized in two ways. One was to weaken the requirements on Γ_{1} and Γ_{2}. It follows from the work of Kellogg [4] and Warschawski [10] that with very modest conditions imposed on Γ_{1} and Γ_{2} one has

$$
F^{-1}(z)=z^{1 / \tau} \varphi(z)
$$

where again $\varphi(z)$ is continuous in \bar{D} and $\varphi(0) \neq 0$. In particular this follows if one assumes that Γ_{1} and Γ_{2} have continuously turning tangents in a neighborhood of the origin (though weaker conditions will suffice).

The other generalization of Lichtenstein's theorem was an improvement of the result (1.1), maintaining the analyticity requirement. For the case $\tau=1$ Lewy [8] showed that $F(z)$ has an asymptotic expansion

[^0]
[^0]: Received August 9, 1964. This work was performed under the auspices of the U.S. Atomic Energy Commission. The author wishes to thank Professor R. Sherman Lehman for suggesting this problem.

