THE UNIFORMIZING FUNCTION FOR CERTAIN SIMPLY CONNECTED RIEMANN SURFACES

Howard B. Curtis, Jr.

Abstract

This paper contains a definition of a class of simply connected Riemann surfaces, the determination of the type of a surface from this class, and a representation of the uniformizing function and its derivative as infinite products of quotients as well as quotients of infinite products.

Definition of the class of surfaces. Let $\left\{a_{2 n-1}\right\}_{n=1}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ be two sequences of real numbers such that for $n \geqq 1$,

$$
0<a_{2 n-1}<b_{2 n-1}<b_{2 n}
$$

and $b_{2 n+1}<b_{2 n}$. A surface F of the class to be discussed consists of sheets $S_{n}, n=1,2,3, \cdots$, over the w-sphere, where for S_{n} a copy of the w-sphere,
(a) S_{1} is slit along the real axis from a_{1} to b_{1}.
(b) For $n \geqq 1, S_{2 n}$ is slit along the real axis from $a_{2 n-1}$ to $b_{2 n-1}$ and from $b_{2 n}$ to $+\infty$.
(c) For $n \geqq 1, S_{2 n+1}$ is slit along the real axis from $\alpha_{2 n+1}$ to $b_{2 n+1}$ and from $b_{2 n}$ to $+\infty$.
(d) For $n \geqq 1, S_{n}$ is joined to S_{n+1} along the slits to make the b_{n} coincide and to form first order branch points at the endpoints of the slits.

The uniformizing function. Because F is simply connected and noncompact, there exists a unique function g which maps F schlichtly and conformally onto $\{|z|<R \leqq \infty\}$, where for $f(z)=g^{-1}(z), f(0)=$ $0 \in S_{1}$ and $f^{\prime}(0)=1$. Two surfaces of hyperbolic type are obtained by slitting each sheet of F along the uncut parts of the real axis, and an application of the reflection principle to the uniformizing function of one of these surfaces shows that $f(z)$ is real for real z. Let $f\left(\alpha_{2 k-1}\right)=a_{2 k-1}, f\left(-\beta_{k}\right)=b_{k}, f\left(\gamma_{2 k}\right)=\infty \in S_{2 k}$ and $S_{2 k+1}, f\left(-\gamma_{1}\right)=\infty \in S_{1}$, and $f\left(\delta_{k}\right)=0 \in S_{k}$. The image of F in the z-plane satisfies the following properties. The image of S_{n} is a region which is symmetric about the real axis. S_{1} is mapped onto a domain containing the origin and bounded by a simple closed curve C_{1} which intersects the real axis at $-\beta_{1}$ and α_{1}. For $n \geqq 2, S_{n}$ is mapped onto an annular region about the origin and bounded by two simple closed curves C_{n-1} and C_{n}, which

[^0]
[^0]: Received July 24, 1964. Research for this paper was supported by a grant from the University of Texas Research Institute and revision of the paper was completed while the author was a Research Fellow in Mathematics at Rice University.

