THE UNIFORMIZING FUNCTION FOR CERTAIN SIMPLY CONNECTED RIEMANN SURFACES

HOWARD B. CURTIS, JR.

This paper contains a definition of a class of simply connected Riemann surfaces, the determination of the type of a surface from this class, and a representation of the uniformizing function and its derivative as infinite products of quotients as well as quotients of infinite products.

Definition of the class of surfaces. Let $\{a_{2n-1}\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be two sequences of real numbers such that for $n \ge 1$,

$$0 < a_{2n-1} < b_{2n-1} < b_{2n}$$

and $b_{2n+1} < b_{2n}$. A surface F of the class to be discussed consists of sheets S_n , $n = 1, 2, 3, \cdots$, over the *w*-sphere, where for S_n a copy of the *w*-sphere,

- (a) S_1 is slit along the real axis from a_1 to b_1 .
- (b) For $n \ge 1$, S_{2n} is slit along the real axis from a_{2n-1} to b_{2n-1} and from b_{2n} to $+\infty$.
- (c) For $n \ge 1$, S_{2n+1} is slit along the real axis from a_{2n+1} to b_{2n+1} and from b_{2n} to $+ \infty$.
- (d) For $n \ge 1$, S_n is joined to S_{n+1} along the slits to make the b_n coincide and to form first order branch points at the endpoints of the slits.

The uniformizing function. Because F is simply connected and noncompact, there exists a unique function g which maps F schlichtly and conformally onto $\{|z| < R \leq \infty\}$, where for $f(z) = g^{-1}(z)$, $f(0) = 0 \in S_1$ and f'(0) = 1. Two surfaces of hyperbolic type are obtained by slitting each sheet of F along the uncut parts of the real axis, and an application of the reflection principle to the uniformizing function of one of these surfaces shows that f(z) is real for real z. Let $f(\alpha_{2k-1}) = a_{2k-1}$, $f(-\beta_k) = b_k$, $f(\gamma_{2k}) = \infty \in S_{2k}$ and S_{2k+1} , $f(-\gamma_1) = \infty \in S_1$, and $f(\delta_k) = 0 \in S_k$. The image of F in the z-plane satisfies the following properties. The image of S_n is a region which is symmetric about the real axis. S_1 is mapped onto a domain containing the origin and bounded by a simple closed curve C_1 which intersects the real axis at $-\beta_1$ and α_1 . For $n \geq 2$, S_n is mapped onto an annular region about the origin and bounded by two simple closed curves C_{n-1} and C_n , which

Received July 24, 1964. Research for this paper was supported by a grant from the University of Texas Research Institute and revision of the paper was completed while the author was a Research Fellow in Mathematics at Rice University.