SOME CHARACTERIZATIONS OF EXPONENTIAL-TYPE DISTRIBUTIONS

E. M. BOLGER¹ and W. L. HARKNESS

Let $\mathscr{J} = \{f(x; \delta) = \exp[x\delta + q(\delta)], \delta \in (a, b)\}$ be a family of exponential-type probability density-functions (exp. p.d.f.'s) with respect to a σ -finite measure μ . Let $M(t; \delta)$, $a - \delta < t < \delta$ $b-\delta$, denote the moment generating function (m.g.f.) corresponding to $f(x; \delta) \in \mathcal{J}$, and let $c(t; \delta) = \ln M(t; \delta) =$ $\sum_{k=1}^{\infty} \lambda_k(\delta) t^k / k!$ be the cumulative generating function. The main results pertain to characterizations of certain exp. p.d.f.'s in terms of the cumulants $\lambda_k(\delta)$. First, it is shown that if $M(t; \delta_0)$ is the m.g.f., respectively, of a degenerate, Poisson, or normal law for some $\delta_0 \in (a, b)$, then $M(t; \delta)$ is the m.g.f. of the given law for all $\delta \in (a, b)$, and that infinite divisibility (inf. div) of $M(t; \delta_0)$ for some δ_0 implies inf. div. for all δ . Further, it is shown that if $\varphi(t)$ is a nondegenerate, inf. div. characteristic function (ch. f.) with finite fourth cumulant λ_4 , then $\lambda_4 = 0$ if and only if $\varphi(t)$ is the ch.f. of a normal law, while if $\lambda_4 = a\lambda_3 = a^2\lambda_2 \neq 0$, then $\varphi(t)$ is the ch.f. of a Poisson law. Combining these results, it follows that if $M(t; \delta_0)$ is inf. div., and nondegenerate, with $\lambda_4(\delta_0) = 0$, then $M(t; \delta)$ is the m.g.f. of a normal law for all $\delta \in (a, b)$. A similar result characterizes the Poisson law. Finally, it is proved that the normal law is the unique exp. p.d.f. which is symmetric.

An exponential-type family of distributions is defined by probability densities of the form

$$(\,1\,) \qquad \qquad f(y;\,\delta) = \exp\left[y\delta + q(\delta)
ight]\,, \qquad a < \delta < b$$

with respect to a σ -finite measure μ over a Euclidean sample space $(\mathfrak{X}, \mathfrak{A})$. It is known ([1], p. 51) that the set of parameter points δ such that $\int \exp[\delta y] d\mu(y) < \infty$, is an interval (finite or not). The binomial, Poisson, normal, gamma, and negative binomial disiributions provide familiar examples of exponential-type distributions.

A few structural properties for this family are considered. Section 2 contains some useful lemmas which are applied in § 3 to obtain some characterizations of the Poisson and normal distributions.

2. Some lemmas. Patil [3] has shown that a collection of d.f.'s $\{F(x; \delta): \delta \in (a, b)\}$ is of exponential-type if and only if the

Received March 12, 1964 and in revised form July 27, 1964.

¹ Now at Bucknell University.