INFINITE PRODUCTS OF SUBSTOCHASTIC MATRICES

N. J. Pullman

This paper is about two types of infinite products of substochastic matrices $\left\{A_{j}\right\}$ namely: the left product defined by the sequence of left partial products $A_{1}, A_{2} A_{1}, A_{3} A_{2} A_{1}, \cdots$; and the right product defined by the sequence of right partial products $A_{1}, A_{1} A_{2}, A_{1} A_{2} A_{3}, \cdots$.

The basic theorem is that if the A_{n} are each ∞ by ∞ then:
a. There is a nonempty set E of substochastic sequences each of which (except possibly the zero sequence, 0) is the componentwise limit of a sequence of rows, one from each left partial product;
b. Any sequence $\left\{\rho_{n}\right\}$ of rows, one from each left partial product, can be approximated by a sequence of convex combinations $\left\{c_{n}\right\}$ of points of E (that is, $\left\{\rho_{n}-c_{n}\right\}$ converges componentwise to the zero sequence), and $c . E=\{0\}$ if and only if every sequence of rows, one from each left partial product, converges to 0 .

Similar conclusions follow immediately for the right product of ∞ by ∞ doubly substochastic matrices.

The asymptotic behaviour of the right product of a special class of $\left\{A_{n}\right\}$ is also considered.

The finite case (that is, when all the A_{n} are r by r) for stochastic A_{n} is treated independently for convenience, even though the result in this case (Theorem 1) is actually a direct consequence of the basic Theorem 1'. Its conclusion is that there is an m by r stochastic matrix A with $1 \leqq m \leqq r$ and permutation matrices Q_{n} such that
a. if $m<r$ then for some stochastic $r-m$ by m matrices C_{n} :

$$
\lim _{n \rightarrow \infty}\left\{A_{n} A_{n-1} \cdots A_{1}-Q_{n}\binom{A}{C_{n} A}\right\}=0
$$

and b. if $m=r$ then

$$
\lim _{n \rightarrow \infty}\left\{A_{n} A_{n-1} \cdots A_{1}-Q_{n} A\right\}=0
$$

Some results on fixed points are obtained in the finite case which carry over, in restricted form, to the infinite case.

A real matrix is said to be stochastic if none of its entries is negative and each of its row sums is 1 . Two types of infinite products which arise naturally from a given sequence $\left\{A_{n}\right\}$ of stochastic matrices are those whose nth partial products are $R_{n}=A_{1} A_{2} \cdots A_{n}$ and $L_{n}=$ $A_{n} A_{n-1} \cdots A_{1}$ respectively. We'll call the sequence $\left\{R_{n}\right\}$ the right

Received October 9, 1964.

