ALGEBRAS AND FIBER BUNDLES

J. M. G. FEll

Let A be an associative algebra and \hat{A}_{n} the family of all equivalence classes of irreducible representations of A of dimension exactly n. Topologizing \hat{A}_{n} as in a paper about to appear in the Transactions of the American Mathematical Society, we show that for each n, A gives rise to a fiber bundle having \hat{A}_{n} as its base space and the $n \times n$ total matrix algebra as its fiber.

Throughout this note A will be an arbitrary fixed associative algebra over the complex field C. By a representation of A we understand a homomorphism T of A into the algebra of all linear endomorphisms of some complex linear space $H(T)$, the space of T. We write $\operatorname{dim}(T)$ for the dimension of $H(T)$. Irreducibility and equivalence of representations are understood in the purely algebraic sense. If T is a representation, $r \cdot T$ will be the direct sum of r copies of T. Let $\hat{A}^{(\rho)}$ the family of all equivalence classes of finitedimensional irreducible representations of A; and put

$$
\hat{A}^{(n)}=\left\{T \in \widehat{A}^{(f)} \mid \operatorname{dim}(T) \leqq n\right\}, \hat{A}_{n}=\left\{T \in \hat{A}^{(f)} \mid \operatorname{dim}(T)=n\right\}
$$

We shall usually not distinguish between representations and the equivalence classes to which they belong.

Let T be a finite-dimensional representation of A. If for each a in $A \tau(a)$ is the matrix of T_{a} with respect to some fixed ordered basis of $H(T)$, then $\tau: a \rightarrow \tau(a)$ is a matrix representation of A equivalent to T.

By A^{\ddagger} we mean the space of all complex linear functionals on A, and by $\operatorname{Ker}(\varphi)$ the kernel of φ. If $T \in \widehat{A}^{(f)}$, we put

$$
\Phi(T)=\left\{\varphi \in A^{*} \mid \operatorname{Ker}(T) \subset \operatorname{Ker}(\varphi)\right\}
$$

An element φ of A^{*} is associated with T if $\varphi \in \Phi(T)$. One element of $\Phi(T)$ is of course the character χ^{T} of $T\left(\chi^{T}(a)=\right.$ Trace $\left(T_{a}\right)$ for a in A). An element T of $\hat{A}^{(f)}$ is uniquely determined by the knowledge of one nonzero functional in $\Phi(T)$ ([2], Proposition 2).

As in [2] we equip $\hat{A}^{(f)}$ with the functional topology as follows: If $T \in \hat{A}^{(f)}$ and $\mathscr{S} \subset \hat{A}^{(f)}, T$ belongs to the functional closure of \mathscr{S} if $\Phi(T) \subset\left(\bigcup_{s \in \mathscr{S}} \Phi(S)\right)^{-}$where - denotes closure in the topology of pointwise convergence on A.

Our main object in this note is to prove the following fact about

[^0]
[^0]: Received November 11, 1964.

