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A TRANSPLANTATION THEOREM FOR
ULTRASPHERICAL COEFFICIENTS
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Let f(θ) be integrable on (0, π) and define

an = [' f(β) cos nθ dθ , K = «1/2 ί* /(<?)P»(cos 0)(sin θγ'HΘ
Jo Jo

where Pn(x) is the Legendre polynomial of degree n. Then

(1) c ^ ±\an\Kn +

for 1 < p < oo, —1 < a < p — 1, where C and c depend on p
and a but not on / . From this we obtain a form of the
Marcinkiewicz multiplier theorem for Legendre coefficients.
Also an analogue of the Hardy-Littlewood theorem on Fourier
coefficients of monotone coefficients is obtained. In fact, any
norm theorem for Fourier functions can be transplanted by
(1) to a corresponding theorem for Legendre coefficients.

Actually, the main theorem of this paper deals with ultra-
spherical coefficients and (1) is just a typical special case,
which is stated as above for simplicity.

Let Pn

λ (x) be defined by (1 - 2rx + r2)~λ = 2,Γ=o P£(%)rn for λ > 0.
The functions P^(cos θ) are orthogonal on (0, π) with respect to the
measure (sin0)2λeί0 and

Observe that t« = Anl~K + O(n~κ) where A will denote a constant whose
numerical value is of no interest to us. For simplicity we set ψn{θ) =
ί£P^(cos 0)(sin θ)κ. The functions {ψn{β)}ζ^ form a complete orthonormal
sequence of functions on (0, π) which for λ = l reduce to {A sin (n+l)θ}ϊ.
Also limλ̂ o <Pn(θ) = A cos nθ so the functions φ^(θ) are generalizations
of the trigonometric functions which are used in classical Fourier
series. For uniformity we define φl[θ) = (2/π)m cos nθ. Later we shall
state an asymptotic formula for φ^{θ) which shows another close con-
nection with trigonometric functions. In essence it says that ψn{θ)
looks like cos[(w + λ)0 — ττ(λ/2)]. All of the facts about φ\ that are
quoted without reference are in [15]. Since φ\(β) are a bounded
orthonormal sequence we may consider their Fourier coefficients. Let
fe L\0, π) and define
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