A TRANSPLANTATION THEOREM FOR ULTRASPHERICAL COEFFICIENTS

RICHARD ASKEY AND STEPHEN WAINGER

Let $f(\theta)$ be integrable on $(0, \pi)$ and define

$$a_n = \int_0^{\pi} f(\theta) \cos n\theta \ d\theta$$
, $b_n = n^{1/2} \int_0^{\pi} f(\theta) P_n(\cos \theta) (\sin \theta)^{1/2} d\theta$

where $P_n(x)$ is the Legendre polynomial of degree n. Then

(1)
$$c \leq \sum_{n=0}^{\infty} |a_n|^p (n+1)^{\omega} / \sum_{n=0}^{\infty} |b_n|^p (n+1)^{\omega} \leq C$$

for $1 , <math>-1 < \alpha < p - 1$, where C and c depend on p and α but not on f. From this we obtain a form of the Marcinkiewicz multiplier theorem for Legendre coefficients. Also an analogue of the Hardy-Littlewood theorem on Fourier coefficients of monotone coefficients is obtained. In fact, any norm theorem for Fourier functions can be transplanted by (1) to a corresponding theorem for Legendre coefficients.

Actually, the main theorem of this paper deals with ultraspherical coefficients and (1) is just a typical special case, which is stated as above for simplicity.

Let $P_n^{\lambda}(x)$ be defined by $(1 - 2rx + r^2)^{-\lambda} = \sum_{n=0}^{\infty} P_n^{\lambda}(x)r^n$ for $\lambda > 0$. The functions $P_n^{\lambda}(\cos \theta)$ are orthogonal on $(0, \pi)$ with respect to the measure $(\sin \theta)^{2\lambda} d\theta$ and

$$(1) \quad \int_0^{\pi} \left[P_n^{\lambda}(\cos\theta) \right]^2 (\sin\theta)^{2\lambda} d\theta = \frac{\Gamma(n+2\lambda)\Gamma(1/2)\Gamma(\lambda+1/2)}{n!(n+\lambda)\Gamma(\lambda)\Gamma(2\lambda)} = [t_n^{\lambda}]^{-2} .$$

Observe that $t_n^{\lambda} = An^{1-\lambda} + O(n^{-\lambda})$ where A will denote a constant whose numerical value is of no interest to us. For simplicity we set $\varphi_n^{\lambda}(\theta) = t_n^{\lambda} P_n^{\lambda}(\cos \theta)(\sin \theta)^{\lambda}$. The functions $\{\varphi_n^{\lambda}(\theta)\}_{n=0}^{\infty}$ form a complete orthonormal sequence of functions on $(0, \pi)$ which for $\lambda = 1$ reduce to $\{A \sin (n+1)\theta\}_0^{\infty}$. Also $\lim_{\lambda \to 0} \varphi_n^{\lambda}(\theta) = A \cos n\theta$ so the functions $\varphi_n^{\lambda}(\theta)$ are generalizations of the trigonometric functions which are used in classical Fourier series. For uniformity we define $\varphi_n^{\lambda}(\theta) = (2/\pi)^{1/2} \cos n\theta$. Later we shall state an asymptotic formula for $\varphi_n^{\lambda}(\theta)$ which shows another close connection with trigonometric functions. In essence it says that $\varphi_n^{\lambda}(\theta)$ looks like $\cos [(n + \lambda)\theta - \pi(\lambda/2)]$. All of the facts about φ_n^{λ} that are quoted without reference are in [15]. Since $\varphi_n^{\lambda}(\theta)$ are a bounded orthonormal sequence we may consider their Fourier coefficients. Let $f \in L^1(0, \pi)$ and define

Received October 5, 1964. The first author was supported in part by N.S.F. grant 3483. The second author was supported in part by N.S.F. grant 1685.