MINIMAL GERSCHGORIN SETS II

B. W. Levinger and R. S. Varga

The Gerschgorin Circle Theorem, which yields n disks whose union contains all the eigenvalues of a given $n \times n$ matrix $A=\left(a_{i, j}\right)$, applies equally well to any matrix $B=\left(b_{i, j}\right)$ of the set Ω_{A} of $n \times n$ matrices with $b_{i, i}=a_{i, i}$ and $\left|b_{i, j}\right|=\left|a_{i, j}\right|$, $1 \leqq i, j \leqq n$. This union of n disks thus bounds the entire spectrum $S\left(\Omega_{A}\right)$ of the matrices in Ω_{A}. The main result of this paper is a precise characterization of $S\left(\Omega_{4}\right)$, which can be determined by extensions of the Gerschgorin Circle Theorem based only on the use of positive diagonal similarity transformations, permutation matrices, and their intersections.

Given any $n \times n$ complex matrix $A=\left(\alpha_{i, j}\right)$, it is well known that the simplest of Gerschgorin arguments, which depends upon row sums of the moduli of off-diagonal entries of the matrix $X^{-1} A X, X$ a positive diagonal matrix, yields the union of n disks which contains all the eigenvalues of A. It is clear that this union of n disks necessarily contains all the eigenvalues of any $n \times n$ matrix in the set Ω_{Δ} defined as follows: $B=\left(b_{i, j}\right) \in \Omega_{\Delta}$ if $b_{i, i}=a_{i, i}, 1 \leqq i \leqq n$, and $\left|b_{i, j}\right|=\left|a_{i, j}\right|$ for all $1 \leqq i, j \leqq n, i \neq j$. Hence, this union of n Gerschgorin disks can be viewed as giving bounds for the entire spectrum $S\left(\Omega_{4}\right)=$ $\left\{z \mid \operatorname{det}(z I-B)=0\right.$ for some $\left.B \in \Omega_{A}\right\}$ of the set Ω_{Δ}.

It is logical to ask to what extent the spectrum $S\left(\Omega_{4}\right)$ can be more precisely determined by extensions of Gerschgorin's original argument [3]. In the previous paper [6], it was shown that

$$
\begin{equation*}
\partial G\left(\Omega_{\Delta}\right) \subset S\left(\Omega_{4}\right) \subset G\left(\Omega_{4}\right), \tag{1.1}
\end{equation*}
$$

where $G\left(\Omega_{4}\right)$ is the minimal Gerschgorin set deduced from A and $\partial G\left(\Omega_{4}\right)$ is its boundary. The first inclusion of (1.1) states that every point of the boundary $\partial G\left(\Omega_{\Delta}\right)$ of the minimal Gerschgorin set is then an eigenvalue of some $B \in \Omega_{\Delta}$. We now extend the results of [6] by making use of results of Schneider [4], and Camion and Hoffman [1]. In so doing, we shall precisely determine $S\left(\Omega_{4}\right)$.

To begin, let $P_{\phi}=\left(\delta_{i, \phi(j)}\right)$ be an $n \times n$ permutation matrix, where ϕ is a permutation of the integers $1 \leqq i \leqq n$ and $\delta_{i, j}$ is the Kronecker delta function, and let $X=\operatorname{diag}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, where $\boldsymbol{x}>\mathbf{0}$. Given $B \in \Omega_{\Delta}$, we define the $n \times n$ matrix $M^{\phi}(\boldsymbol{x})$ by

$$
\begin{equation*}
M^{\phi}(\boldsymbol{x})=\left(X^{-1} B X-\lambda I\right) P_{\phi}=\left(m_{i, j}\right), \tag{1.2}
\end{equation*}
$$

so that
Received May 19, 1964.

