ON THE CHARACTERISTIC ROOTS OF THE PRODUCT OF CERTAIN RATIONAL INTEGRAL MATRICES OF ORDER TWO

Lorraine L. Foster

This paper deals with a special case of the following problem: Let A, B be matrices of order n over the rational integers. Compare the algebraic number field generated by the characteristic roots of $A B$ with those generated by A, B.

We let $M(r, s)$ denote the companion matrix of $x^{2}+r x+s$, for rational integers r and s, and let $N(r, s)=M(r, s)(M(r, s))^{\prime}$. Further let $F(M(r, s))$ and $F(N(r, s))$ denote the fields generated by the characteristic roots of $M(r, s)$ and $N(r, s)$ over the rational field, R. This paper is concerned with $F(N(r, s))$, especially in relation to $F(M(r, s))$. The principal results obtained are outlined as follows:

Let S be the set of square-free integers which are sums of two squares. Then $F(N(r, s))$ is of the form $R(\sqrt{c})$, where $c \in S$. Further, $F(N(r, s))=R$ if and only if $r s=0$. Suppose $c \in S$. Then there exist infinitely many distinct pairs of integers (r, s) such that $F(N(r, s))=R(\sqrt{c})$.

Further, if $c \in S$, there exists an infinite sequence $\left\{\left(r_{n}, s_{n}\right)\right\}$ of distinct pairs of integers such that $F\left(M\left(r_{n}, s_{n}\right)\right)=R(\sqrt{ } \bar{c})$ and $F\left(N\left(r_{n}, s_{n}\right)\right)=R\left(\sqrt{ } \overline{c d_{n}}\right)$ for some integers d_{n} such that $\left(c, d_{n}\right)=1$. If $c \in S$ and c is odd or $c=2$, there exists an infinite sequence $\left\{\left(r_{n}^{\prime}, s_{n}^{\prime}\right)\right\}$ of distinct pairs of integers such that $F\left(N\left(r_{n}^{\prime}, s_{n}^{\prime}\right)\right)=R\left(\sqrt{\bar{c})}\right.$ and $F\left(M\left(r_{n}^{\prime}, s_{n}^{\prime}\right)\right)=R\left(\sqrt{\left.\overline{c d_{n}^{\prime}}\right)}\right.$ for some integers d_{n}^{\prime} such that $\left(c, d_{n}^{\prime}\right)=1$.

There are five known pairs of integers (r, s) with $r s \neq 0$ and $s \neq-1$ such that $F(M(r, s))$ and $F(N(r, s))$ coincide. For $s \equiv 2(\bmod 4)$ and for certain odd integers s the fields $F(M(r, s))$ and $F(N(r, s))$ cannot coincide for any integers r.

Finally, for any integer $r \neq 0$ (or $s \neq 0,-1$) there exist at most a finite number of integers s (or r) such that the two fields coincide.

Let $A=\left(\alpha_{i j}\right)$ be a matrix of order n with elements in the complex field. We say A is normal if and only if $\bar{A}^{\prime} A=A \bar{A}^{\prime}$ where $\bar{A}^{\prime}=$ $\left(\overline{a_{j i}}\right)$. It is known that if A is normal, with characteristic roots λ_{i}, $i=1, \cdots, n$, then ${ }^{1}$ the characteristic roots of $A \bar{A}^{\prime}$ are given by $\lambda_{i} \cdot \bar{\lambda}_{i}, i=1, \cdots, n_{\text {. Conversely, if the characteristic roots of } A \bar{A}^{\prime} \text { can }}$ be written as $\lambda_{i} \cdot \bar{\lambda}_{\delta_{i}}, i=1, \cdots, n$, where $\left\{\delta_{1}, \cdots, \delta_{n}\right\}$ is some permuta-

[^0]
[^0]: ${ }^{1}$ This follows immediately from Theorem 1, [1].

