THE KLEIN GROUP AS AN AUTOMORPHISM GROUP WITHOUT FIXED POINT

S. F. Bauman

An automorphism group V acting on a group G is said to be without fixed points if for any $g \in G, v(g)=g$ for all $v \in V$ implies that $g=1$. The structure of V in this case has been shown to influence the structure of G. For example if V is cyclic of order p and G finite then John Thompson has shown that G must be nilpotent. Gorenstein and Herstein have shown that if V is cyclic of order 4 then a finite group G must be solvable of p-length 1 for all $p||G|$ and G must possess a nilpotent commutator subgroup.

In this paper we will consider the case where G is finite and V noncyclic of order 4 . Since V is a two group all the orbits of G under V save the identity have order a positive power of 2. Thus G is of odd order and by the work of FeitThompson G is solvable. We will show that G has p-lengh 1 for all $p \| G \mid$ and G must possess a nilpotent commutator subgroup.

Remark. It would be interesting to have a direct proof of solvability without resorting to the work of Feit-Thompson.

From now on in this paper G represents a finite group admitting V as a noncyclic four group without fixed points. If X is a group admitting an automorphism group A then $Z(X), \Phi(X), X-A$ will be respectively the center of X, the Frattini subgroup of X and the semi-direct product of S by A in the holomorph of X. All other notations are standard.

Suppose $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ where the v_{i} are the nonidentity elements of V. Denote by G_{i} the set of elements which are left fixed by v_{i}. These are easily seen to be V-invariant subgroups of G and by a result of Burnside ([1] p. 90) G_{i} are Abelian and v_{j} restricted to G_{i} is the inverse map if $i \neq j$. These subgroups G_{i} are in a sense the building blocks of G.

Lemma 2. ([4] p. 555)
(i) $|G|=\left|G_{1}\right|\left|G_{2}\right|\left|G_{3}\right|$
(ii) $G=G_{1} G_{2} G_{3}$
(iii) Every element $g \in G$ has a unique decomposition $g=g_{1} g_{2} g_{3}$, $f_{i} \in G_{i}$.

Lemma 2. If $|G|=h m$ where $(h, m)=1$ then G contains a unique V invariant group H such that $|H|=h$.

