EVERYWHERE DEFINED LINEAR TRANSFORMATIONS AFFILIATED WITH RINGS OF OPERATORS

Ernest L. Griffin

Abstract

Let M be a ring of operators on a Hilbert space H. This paper considers conditions under which an operator T affliated with M is bounded (or can be unbounded). In particular, we consider operators whose domain is the entire space H. We prove: Theorem 3. If M has no type I factor part, then T is bounded. Theorem 4. T is bounded if and only if T is bounded on each minimal projection in M. Theorem 6. In order that every linear mapping from H into H which commutes with M be bounded, it is necessary and sufficient that M should contain no minimal projection whose range is an infinite dimensional subspace of H. These results were suggested by a theorem of J. R. Ringrose: Theorem 8. If $M=M^{\prime}$ then T is bounded.

In a paper on triangular algebras ([4], Lemma 2.12) J. R. Ringrose encountered the following situation: he was given a linear operator T with domain equal to an entire Hilbert space H and a ring of operators M commuting with T. In the case $M=M^{\prime}$ (M maximal abelian) he was able to show that T had to be bounded. (For the relevant background theory, see [1, 2].) The purpose of this paper is to consider other types of rings of operators commuting with T and conditions under which T can be unbounded.
2. Since the projections in M commute with T, the ranges of these projections are invariant under T; and consequently operators are induced thereby on such subspaces. We begin by considering orthogonal families of such operators.

Lemma 1. If $\left\{E_{\gamma} \mid \gamma \in \Gamma\right\}$ is an orthogonal family of projections in M, then the norms $\left\{\left\|T E_{\gamma}\right\| \mid \gamma \in \Gamma\right\}$ are almost uniformly bounded; that is, there exists a finite subset Γ_{0} of Γ and a positive number b such that $\left\|T E_{\gamma}\right\| \leqq b$ for $\gamma \in \Gamma-\Gamma_{0}$.

Proof. Assume lemma false. We first choose a $E_{\gamma_{1}}$ such that $\left\|T E_{\gamma_{1}}\right\|>1$. (If $\left\|T E_{\gamma}\right\| \leqq 1$ for all $\gamma \in \Gamma$; then $\Gamma_{0}=$ null set, $b=1$ fulfills the lemma.) Now assume for a positive integer n that $\left\{E_{\gamma_{k}} \mid k=1,2,3, \cdots, n\right\}$ have been chosen so that $\left\|T E_{\gamma_{k}}\right\|>k$ for each k. If $\left\|T E_{\gamma}\right\| \leqq n+1$ for $\gamma \in \Gamma-\left\{\gamma_{k} \mid k=1,2,3, \cdots, n\right)$, then $b=n+1$ leads to the conclusion of the lemma. Thus we can pick

