RESTRICTED BIPARTITE PARTITIONS

L. CARLITZ AND D. P. ROSELLE

Let $\pi_k(n, m)$ denote the number of partitions

$$n = n_1 + n_2 + \cdots + n_k$$

$$m = m_1 + m_2 + \cdots + m_k$$

subject to the conditions

$$\min(n_j, m_j) \ge \max(n_{j+1}, m_{j+1}) \quad (j = 1, 2, \dots, k-1)$$
.

Put

$$\xi^{(k)}(x, y) = \sum_{n=0}^{\infty} \pi_k(n, m) x^n y^m$$
.

We show that

$$\begin{split} \xi^{(k)}(x,y) &= \prod_{j=1}^k \frac{1-x^{2j-1}y^{2j-1}}{(1-x^jy^j)\,(1-x^jy^{j-1})\,(1-x^{j-1}y^j)} \;, \\ \sum_{n,\,m=0}^\infty \pi(n,m;\lambda) x^n y^m &= 1+(1-\lambda)\,\sum_{k=1}^\infty \lambda^k \xi^{(k)}(x,y) \;, \\ \sum_{n\,m=0}^\infty \, \phi(n,m) \, x^n y^m &= \sum_{n=0}^\infty \, x^n y^n \xi^{(n)}(x^2,y^2) \;, \end{split}$$

where $\pi(n, m; \lambda)$ denotes the number of "weighted" partitions of (n, m) and $\phi(n, m)$ is the number of partitions into odd parts $(n_j, m_j$ all odd).

Consider partitions of the bipartite (n, m) of the type

(1.1)
$$n = n_1 + n_2 + n_3 + \cdots m = m_1 + m_2 + m_3 + \cdots,$$

where the n_i , m_i are nonnegative integers subject to the conditions

$$(1.2) \quad \min(n_j, m_j) \ge \max(n_{j+1}, m_{j+1}) \quad (j = 1, 2, 3, \cdots).$$

For brevity we may write (1.2) in the form

$$(n_i, m_i) \ge (n_{i+1}, m_{i+1}) \qquad (j = 1, 2, 3, \cdots)$$

and say that the "parts" of the partition (1.1) decrease.

Let $\pi(n, m)$ denote the number of partitions (1.1) that satisfy (1.2) and let $\rho(n, m)$ denote the numbers of partitions (1.1) that satisfy

$$(1.3) (n_i, m_i) > (n_{i+1}, m_{i+1}) (j=1, 2, 3, \cdots).$$

By the inequality (1.3) is understood