ON THE ZEROS OF A LINEAR COMBINATION OF POLYNOMIALS

Robert Vermes

Abstract

In this paper we consider the location of the zeros of a complex polynomial $f(z)$ expressed as $f(z)=\sum_{k=0}^{n} a_{k} p_{k}(z)$ where $\left\{p_{k}(z)\right\}$ is a given sequence of polynomials of degree k whose zeros lie in a prescribed region E. The principal theorem states that the zeros of $f(z)$ are in the interior of a Jordan curve $S=\{z ;|F(z)|=\operatorname{Max}(1, R)\}$ where F maps the complement of E onto $|z|>1$ and R is the positive root of the equation $\sum_{k=0}^{n-1} \lambda_{k}\left|a_{k}\right| t^{k}-\lambda n\left|a_{n}\right| t^{n}=0$, with $\lambda_{k}>0$ depending on E only. Several applications of this theorem are given. For example; if $\left\{p_{k}(z)\right\}$ is a sequence of orthogonal polynomials on $a \leqq z \leqq b$, then we give an ellipse containing all the zeros of $\sum_{k=0}^{n} a_{k} p_{k}(z)$.

Previous results. An extensive mathematical literature deals with the location of the zeros in the complex plane of a polynomial

$$
\begin{equation*}
f(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n} \tag{1}
\end{equation*}
$$

with complex coefficients a_{j}. Cauchy derived practical bounds for the moduli of the zeros of (1) using the moduli of the coefficients a_{j}. In many investigations the polynomial (1) is not expressed as a linear combination of the sequence $\left\{z^{k}\right\}$, but as

$$
\begin{equation*}
f(z)=b_{0}+b_{1} p_{1}(z)+\cdots+b_{n} p_{n}(z) \tag{2}
\end{equation*}
$$

where $\left\{p_{k}(z)\right\}$ is a given sequence of polynomials. Cauchy's well known result (Marden [2], Th. 27, 1) was generalized by Turán [4] in the case where the expansion in (2) is the Hermite-expansion $e^{z^{2}} \sum_{k=0}^{n} b_{k}\left(e^{-z^{2}}\right)^{(k)}$. He obtained upper bounds for the moduli of the imaginary parts of the zeros, i.e., a 'strip'" where all the zeros of (2) are located. Specht [3], making use of the Christoffel-Darboux formula, extended these results to other sequences of orthogonal polynomials. In our Theorem 1, we replace the "strip" with a bounded region, which will yield an ellipse in the case where the $\left\{p_{k}(z)\right\}$ is a sequence of orthogonal polynomials on a finite interval.
2. Cauchy type estimate. In the sequal we shall use the following notations: Let E be a compact (infinite) set in the complex z-plane, whose complement G is simply connected, $w=F(z)$ the univalent function which is defined on G and maps G conformally on $D:|w|>1$ such that the point at infinity in the two planes correspond to each

