EXTREME COPOSITIVE QUADRATIC FORMS, II

L. D. Baumert

A real quadratic form $Q=Q\left(x_{1}, \cdots, x_{n}\right)$ is called copositive if $Q\left(x_{1}, \cdots, x_{n}\right) \geqq 0$ whenever $x_{1}, \cdots, x_{n} \geqq 0$. If we associate each quadratic form $Q=\sum q_{i j} x_{i} x_{j} \quad q_{i j}=q_{j i}(i, j=1, \cdots, n)$ with a point

$$
\left(q_{11}, \cdots, q_{n n}, \sqrt{2} q_{12}, \cdots, \sqrt{2} q_{n-1, n}\right)
$$

of Euclidean $n(n+1) / 2$ space, then the copositive forms constitute a closed convex cone in this space. We are concerned with the extreme points of this cone. That is, with those copositive quadratic forms Q for which $Q=Q_{1}+Q_{2}$ (with Q_{1}, Q_{2} copositive) implies $Q_{1}=a Q, Q_{2}=(1-a) Q, 0 \leqq a \leqq 1$. In this paper we limit ourselves almost entirely to 5 -variable forms and announce the discovery of an hitherto unknown class of extreme copositive quadratic forms in 5 variables. In view of the known extension process whereby extreme copositive quadratic forms in n variables may be used to generate extreme forms in n^{\prime} variables for any $n^{\prime}>n>2$, this new class of forms thus provides new extreme copositive forms in any number of variables $n^{\prime} \geqq 5$.

Copositive quadratic forms arise in the theory of inequalities and also in the study of block designs. The paper of Diananda [2] provides the connection with inequalities while the paper of Hall and Newman [3] outlines the application of copositive quadratic forms to block designs.
2. Preliminaries. As indicated above, a real quadratic form $Q=Q\left(x_{1}, \cdots, x_{n}\right)$ is called copositive if $Q\left(x_{1}, \cdots, x_{n}\right) \geqq 0$ whenever $x_{1}, \cdots, x_{n} \geqq 0$. Thus any positive semi-definite quadratic form is copositive. Further, any quadratic form all of whose coefficients are nonnegative in clearly copositive. Denoting these classes of forms by S and P respectively, we see that any quadratic form expressible as a sum of elements of P and S is necessarily copositive. In fact, Diananda [2, Th. 2] has shown that all copositive quadratic forms in $n \leqq 4$ variables are of this type (i.e., $Q \in P+S$ if Q is copositive and $n \leqq 4$). On the other hand, A. Horn [3] has constructed an extreme copositive quadratic form in 5 variables which does not belong to $P+S$. The extreme copositive quadratic forms belonging to $P+S$ have been determined by Hall and Newman [3, Th. 3.2]; thus we can restrict our attention to those outside of $P+S$ whenever it is desirable to do so. (Complete details of this theorem of Hall and Newman are given in the first paragraph of $\S 4$ below.)

If $Q\left(x_{1}, \cdots, x_{n}\right)$ is an extreme copositive form so is $Q\left(p_{1} x_{1}, \cdots, p_{n} x_{n}\right)$

