INEQUALITIES FOR FUNCTIONS REGULAR AND BOUNDED IN A CIRCLE

Cecil Craig, Jr. and A. J. Macintyre

This paper is concerned with functions $w=f(z)$ regular and satisfying the inequality $|f(z)|<1$ in $|z|<1$. This class of functions will be denoted E.

We determine conditions on z_{1}, z_{2}, z_{3} and w_{1}, w_{2}, w_{3} for

$$
w_{k}=f\left(z_{k}\right)(k=1,2,3)
$$

to be possible with an $f(z)$ of E. In particular to map the vertices of the equilateral triangle $z_{k}=r e^{2 k \pi i / 3}$ into the vertices of another taken in the opposite direction $w_{k}=\rho e^{-2 k \pi i / 3}$ we must have $\rho \leqq r^{2}$. The extremal function associated with this problem is $w=z^{2}$. It seems convenient to discuss the fixed point if any of the mapping of $|z|<1$ into $|w|<1$. We include a simple proof of the theorem of Denjoy and Wolff that if no such fixed point exists then there is a unique distinguished fixed point on $|z|=1$. We give several results restricting the position of the interior or distinguished boundary fixed point in terms of the location of a zero of $f(z)$ or the value $f(0)$.

The theorem of Pick asserts that if $f(z)$ is in E then $D\left(f\left(z_{1}\right), f\left(z_{\iota}\right)\right) \leqq D\left(z_{1}, z_{2}\right)$ where the nonEuclidean distance

$$
D\left(z_{1}, z_{2}\right)=\frac{1}{2} \log \frac{1+d\left(z_{1}, z_{2}\right)}{1-d\left(z_{1}, z_{2}\right)} \text { with } d\left(z_{1}, z_{2}\right)=\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{2} z_{1}}\right| .
$$

Equality holds if and only if f sets up a Möbius transformation. It follows from Pick's theorem that there can be at most one fixed point of $w=f(z)$ in $|z|<1$ unless $f(z) \equiv z$. It is usually sufficient when f has an interior fixed point at $z=\alpha(\neq 0)$ to suppose $0<\alpha<1$.

Our first four theorems give information about the relative positions of zeros of f, an interior fixed point, and the value $f(0)$. We exclude the case where $f(z) \equiv z$.

Theorem 1. Let $f \in E$ and $f(0) \neq 0$. Then f has no zeros in $|z|<|f(0)|$; and has a zero on $|z|=|f(0)|$ if and only if f determines a Möbius transformation.

Proof. The image of $|z| \leqq|f(0)|$, which we denote by C under the transformation $w=(z+f(0)) /(1+\overline{f(0)} z)$ is a circular disc C^{\prime} having nonEuclidean center $f(0)$ with boundary passing through the origin. The function $w=f(z)$ takes the closed disc C inside C^{\prime} in the case f

