ON THE CONVERGENCE OF RESOLVENTS OF OPERATORS

MINORU HASEGAWA

Let a family of linear operators $\{A_n\}(n = 1, 2, \cdots)$ in a Banach space X have the resolvents $\{R(\lambda; A_n)\}$ which is equicontinuous in n. Suppose that $\{A_n\}$ is a Cauchy sequence on a dense set. Then the question of convergence arises; when will $\{R(\lambda; A_n)x\}$ be a Cauchy sequence for all $x \in X$?

This problem is treated in some special cases and an application to the following theorem is presented.

Let A be the generator of a positive contraction semigroup \sum and let B be a linear operator with domain $\mathscr{D}(B)$ $\supset \mathscr{D}(A)$ in a weakly complete Banach lattice X.

Then A + B or its closed extension generates a positive contraction semi-group \sum' which dominates \sum if and only if A + B is dissipative and B is positive.

In this section we consider the above convergence problem in a Banach space X (cf. [9], [1], [11]).

Let a family of linear operators $\{A_n\}(n = 1, 2, \dots)$ satisfy the following conditions:

(1) for some fixed number λ , the resolvent $R(\lambda; A_n) = (\lambda - A_n)^{-1}$ of A_n exists which acts on X to the domain $\mathscr{D}(A_n)$ of A_n and satisfies the norm condition $|| R(\lambda; A_n) || \leq K_{\lambda}$, where K_{λ} is a positive number independent of n,

(2) there is a dense subspace \mathcal{M} on which $A = \lim A_n$ exists.

PROPOSITION 1. The limit operator $R_0(\lambda; A) = \lim R(\lambda; A_n)$ exists on $\overline{\mathscr{N}}$ and satisfies the norm condition $|| R_0(\lambda; A) ||_{\overline{\mathscr{N}}} \leq K_{\lambda}$ where $\mathscr{N} = (\lambda - A)\mathscr{M}$ and $\overline{\mathscr{N}}$ is its closure.

Proof. For any $x \in \mathcal{M}$ we have

$$||(\lambda - A_n)x|| \ge K_\lambda^{-1} ||x||$$

and thus obtain

$$||\, (\lambda-A)x\,|| \geq K_\lambda^{-1}\,||\,x\,|| - ||\,A_nx - Ax\,||$$
 .

Letting $n \to \infty$, we have

$$||(\lambda - A)x|| \geq K_{\lambda}^{-1} ||x||$$
 .

It also follows that we can extend $(\lambda - A)^{-1}$ to the bounded linear operator $R_0(\lambda; A)$ on $\overline{\mathcal{N}}$ which satisfies