ON SOME HYPONORMAL OPERATORS

V. Istrățescu

Let H be a Hilbert space and T a hyponormal operator $(T^*T - TT^* \ge 0)$. The first result is: if $(T^*)^p T^q$ is a completely continuous operator then T is normal.

Secondly, part we introduce the class of operators on a Banach space which satisfy the condition

||x|| = 1 $||Tx||^2 \le ||T^2x||$

and we prove the following:

1. $\gamma_T = \lim ||T^n||^{1/n} = ||T||;$

2. if T is defined on Hilbert space and is completely continuous then T is normal.

In what follows for this section we suppose that T is a hyponormal operator on Hilbert space H.

THEOREM 1.1. If T is completely continuous then T is normal.

This is known ([1], [2], [3]).

The main result of this section is as follows.

THEOREM 1.2. If $T^{*_p}T^q$ is completely continuous where p and q are positive integers then T is normal.

LEMMA. Let ||T|| = 1. Then in the Hilbert space H there exists a sequence $\{x_n\}, ||x_n|| = 1$ such that

$$(1) \qquad \qquad || T^*x_n || \to 1$$

 $(2) \qquad \qquad || T^m x_n || \rightarrow 1 \qquad \qquad m = 1, 2, 3, \cdots,$

 $(3) \qquad \qquad || T^*Tx_n - x_n || \to 0$

 $(4) \qquad \qquad ||TT^*x_n - x_n|| \to 0$

(5)
$$|| T^*T^m x_n - T^{m-1} x_n || \to 0$$
 $m = 1, 2, 3, \cdots$

Proof. We observe that $(1) \rightarrow (4)$ and $(2) \rightarrow (3)$. Thus it remains $\frac{1}{2}$ to prove (1), (2), and (5).

By definition there exists a sequence $\{x_n\}$, $||x_n|| = 1$ such that

$$|| T^*x_n || \rightarrow || T^* || = || T || = 1.$$

It is known [3] that for x, ||x|| = 1