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ON THE RELATIONSHIP BETWEEN HAUSDORFF
DIMENSION AND METRIC

DIMENSION

A. C. VOSBURG

The definitions of the Hausdorff dimension diπu X, upper
metric dimension dim X and lower metric dimension dim X
of a metric space X all depend upon asymptotic characteristics
of diameters of sets in covers of X, We relate these notions.
First we note that dinu X < dimX holds for all totally bounded
metric spaces X, while on the other hand there exist perfect
subsets A of [0, 1] satisfying dinu A = 0 and dim A = 1 = dim
[0,1]. Finally we show that there exist perfect subsets S of [0,1]
which satisfy dinu S — 0 and dim S — 1 even when strong
local conditions are imposed.

The notions of Hausdorff dimension (see 1, 2) and metric dimen-
sion (see 5 p. 296, 8) are closely related; in fact most compact metric
spaces encountered in analysis have the same Hausdorff and metric
dimensions. In this paper we investigate some aspects of the rela-
tionship between these two concepts.

By the Hausdorff dimension of a subset E of a metric space is
meant the number ά\mh E = sup{p: μ*(E) = + °°}, where μ*(E) is
defined to be 4- ^ if p = 0 and μ*(E) = sup£>0 l(E, p; ε) if p > 0,

( 1 ) l(E, p; ε) = inf | χ (diam E^: E c LKt00!^, diam E^ε for each

For each totally bounded subset A of a metric space (i.e. each
subset which for each ε > 0 can be covered by a finite number of sets
of diameter not exceeding ε) the upper metric dimension dim A and
lower metric dimension dim A of A are defined as follows (all loga-
rithms have base 2):

( 2 ) dim A = lim (log Λ/r

e(A))/log(ε-1)

ε->0+

and

( 3 ) dim_A = Um_(log iV£(A))/log(ε-1) ,
ε-+0+

where, for each ε > 0, Nε(A) denotes the smallest number of sets in
any cover of A by sets of diameter not exceeding 2ε. It is customary
(see 5, p. 280) to abbreviate log Nε(A) by Hε(A); this function has
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