A RADON-NIKODYM THEOREM FOR FINITELY ADDITIVE SET FUNCTIONS

CHARLES FEFFERMAN

Suppose that Σ is a field of subsets of the set S, and suppose that μ and γ are complex-valued finitely additive set functions defined on Σ . Assume that μ is bounded and γ is finite and absolutely continuous with respect to μ . (A word of warning is in order here. The statement " γ is absolutely continuous with respect to μ " is often interpreted as " $\mu(E) = 0$ implies $\gamma(E) = 0$ ". This is not the meaning used here. Our definition is "for every $\varepsilon > 0$ there is a $\delta > 0$ such that $|\mu(E)| < \delta$ implies $|\gamma(E)| < \varepsilon$." Unless μ is bounded and countably additive, the two definitions are not equivalent.)

THEOREM 1. There exists a sequence $\{f_n\}$ of μ -simple functions on S, such that

1.
$$\lim_{n\to\infty}\int_E f_n(s)\mu(ds) = \gamma(E) ,$$

uniformly for $E \in \Sigma$

2.
$$\lim_{n, m \to \infty} \int_{S} |f_n(s) - f_m(s)| v(\mu, ds) = 0$$
,

where $v(\mu)$ is the total variation of μ .

Theorem 1 is established by a pure existence proof, and gives no indication of how to find f_n . A more constructive result is given below.

A partition of S is a finite collection of sets E_i belonging to Σ , such that S is the disjoint union of the E_i , and such that $\mu(E_i) \neq 0, i = 1, \dots, n$.

The set \mathscr{P} of partitions may be directed by refinement, that is, by the following partial order: $P_1 < P_2$ if for every $E \in P_1$ there exist $F_1, \dots, F_r \in P_2$ (r may depend on E) such that E and $\bigcup_{i=1}^r F_i$ differ by a μ -null set.

If P is a partition of S, define the μ -simple function f_P^{γ} to be $\sum_{E \in P} (\gamma(E)/\mu(E))\chi_{E}$, where χ_{E} is the characteristic function of E.

THEOREM 2. If μ is positive, then

$$\lim_{P\in\mathscr{P}}\int_{E}f_{P}^{\gamma}(s)\mu(ds)=\gamma(E)$$
 ,

uniformly for $E \in \Sigma$, where \mathscr{P} is directed as explained above.

(The notation throughout is essentially that of [2].) For positive μ , Theorem 1 reduces to Bochner's Radon-Nikodym Theorem. See [1].