A STUDY OF MULTIVALUED FUNCTIONS

Carlos J. R. Borges

The primary purpose of this study is to determine which topological properties of a space are preserved by multivalued functions. Among other results, the following are proved:
(A) Let $F: X \rightarrow Y$ be a perfect map from X onto Y, with $F(x) \neq \varnothing$ for each $x \in X$, where X and Y are T_{1}-spaces whose diagonals are G_{δ}-sets. Then X is metrizable (stratifiable) if and only if Y is metrizable (stratifiable)-see Theorem 3.2.
(B) If $F: X \rightarrow Y$ is a multivalued Y-compact quotient map from a separable metrizable space X onto a regular first countable space Y with a G_{δ}-diagonal, then Y is separable metrizable (see Theorem 4.5).
(C) Every (usc-) lsc-function F from a closed subset of a stratifiable space X to a topological space Y admits a (usc-) lsc-extension to all of X (see Theorem 5.2).

Multivalued functions have been extensively studied by Kruse [6], Michael [7; 8], Ponomarev [12; 13; 14], Smithson [15] and Strother [17; 18]. Choquet [2] and Hahn [3] have also considered multivalued functions.
2. Preliminary definitions and results. Because there are many conflicting terminologies in the theory of multivalued functions, we find it necessary to attempt a terminology of our own, which is a direct extension of the most natural and simple terminology of Michael [10] and includes some of Ponomarev's terminology:

Definition 2.1. For any sets X and $Y, F: X \rightarrow Y$ is a multivalued function provided that, for each $x \in X, F(x)$ is a subset of $Y(F(x)$ need not be a closed or nonempty set as required by Ponomarev and others).

Clearly, single-valued functions are just special cases of multivalued functions and indeed a multivalued function from X to Y can obviously be thought of as a single-valued function from X to $\mathscr{A}(Y)$-the family of all subsets of Y (including the empty set).

Definition 2.2. Let $F: X \rightarrow Y$ be a multivalued function. Then (a) $F(A)=\bigcup\{F(x) \mid x \in A\}$ for each $A \subset X$,
(b) $F^{-1}(B)=\{x \in X \mid F(x) \cap B \neq \varnothing\}$ for each $B \subset Y$ (clearly F^{-1} is a multivalued function from Y to X).

It is quite easy to construct a multivalued function F from a

