INTERPOSITION AND APPROXIMATION

Bernard Kripke and Richard Holmes

Let $\mathscr{B}(X)$ be the space of all bounded real-valued functions on a set X, with the norm $\|f\|=\sup \{|f(x)|: x \in X\}$, and let K be any nonempty subset of $\mathscr{B}(X)$. The question whether an element f of $\mathscr{B}(X)$ has a best approximation g in K (such that $\|f-g\|=\delta(f)=\inf \{\|f-h\|: h \in K\}$) can be formulated as the problem of interposing a function g in K between two functions, $L(\cdot, f)$ and $U(\cdot, f)$, which are constructed out of K by certain lattice operations. If K is closed with respect to these lattice operations, or has a certain interposition property, the best approximation will always exist.

For example, X might be a bounded subset of a Banach space E and K might be the set of restrictions to X of the continuous linear functionals in $E^{*}[2,6] . \quad U(\cdot, f)$ is then constructed in two stages: first the suprema of bounded subsets of K are formed, and then $U(\cdot, f)$ is obtained as a decreasing sequential limit of such suprema. In two other typical cases, K consists of the bounded continuous functions on a paracompact space [5], or the distance decreasing functions on a metric space. These two share the property of translational invariance:

$$
\begin{equation*}
\text { if } f \in K \text { and } c \text { is a constant, then }(f+c) \in K \text {, } \tag{1}
\end{equation*}
$$

which permits $U(\cdot, f)$ to be constructed by forming suprema alone, without the intervention of decreasing sequential limits. In the last of these sample cases, it actually turns out that $U(\cdot, f)$ is itself in K, and is thus the largest of the best approximators to f in K.

1. Mere existence. For every $\rho>0$, there is a $g \in K$ such that $\|f-g\|<\delta(f)+\rho$, or in other words $f-\delta(f)-\rho<g<f+\delta(f)+\rho$. Therefore, $U_{\rho}(x, f)=\sup \{g(x): g \in K, g \leqq f+\delta(f)+\rho\}$ lies between $f-\delta(f)-\rho$ and $f+\delta(f)+\rho$, and dominates

$$
L_{\rho}(x, f)=\inf \{g(x): g \in K, g \geqq f-\delta(f)-\rho\}
$$

L_{ρ} and U_{ρ} are, respectively, monotonically increasing and decreasing functions of ρ, so that

$$
\begin{aligned}
f-\delta(f) \leqq L(\cdot, f) & =\lim _{n \rightarrow \infty} L_{1 / n}(\cdot, f) \leqq \lim _{n \rightarrow \infty} U_{1 / n}(\cdot, f) \\
& =U(\cdot, f) \leqq f+\delta(f) .
\end{aligned}
$$

