## A NOTE ON FUNCTIONS WHICH OPERATE

## alan G. Konheim and Benjamin Weiss

Let $\mathfrak{Q}, \mathscr{B}$ denote two families of functions $a, b: X \rightarrow Y$. A function $F: Z \cong Y \rightarrow Y$ is said to operate in ( $\because, \mathscr{B}, \mathscr{B}$ ) provided that for each $a \in \mathfrak{Z}$ with range $(a) \cong Z$ we have $F(a) \in \mathscr{B}$. Let $G$ denote a locally compact Abelian group. In this paper we characterize the functions which operate in two cases:
(i) $\mathfrak{H}=\Phi_{r}(G)=$ positive definite functions on $G$ with $\phi(e)=r$ and $\mathscr{B}=\mathscr{\Phi}_{i . d ., s}(G)=$ infinitely divisible positive definite functions on $G$ with $\phi(e)=s$.
(ii) $\mathfrak{U}=\mathscr{B}=\widetilde{\mathscr{D}}_{1}(G)=\log \mathscr{\Phi}_{\text {i.d.,1 }}(G)$.

The determination of the class of functions that operate in ( $\mathfrak{C}, \mathscr{B}$ ) for other special families may be found in refernces [3]-[8]. Our goal here is to extend the results of $[5,6]$ and, at the same time, to obtain a new derivation of the results recently announced in [3].
$G$ will denote a locally compact Abelian group and $B^{+}(G)$ the family of continuous, complex-valued, nonnegative-definite functions on G. Let

$$
\begin{aligned}
\Phi_{r}(G) & =\left\{\phi: \phi \in B^{+}(G) \text { and } \phi(e)=r\right\}^{1} \\
\Phi_{i . d ., r}(G) & =\left\{\phi: \phi \in \Phi_{r}(G) \text { and }(\phi)^{1 / n} \in B^{+}(G) \text { for } n \geqq 1\right\} \\
\widetilde{\Phi}_{r}(G) & =\log \Phi_{i . d ., r}(G)=\left\{\log \phi: \phi \in \Phi_{i . d ., r}(G)\right\}
\end{aligned}
$$

In the case where $G$ is the real line $\Phi_{1}(G)$ is the class of characteristic functions, $\Phi_{i . d ., 1}(G)$ the class of characteristic functions corresponding to the infinitely devisible distributions while $\widetilde{\Phi}_{1}(G)$ is the class of logarithms of this latter class whose form is well known since Levy and Khintchine.

Theorem 1. If $G$ has elements of arbitrarily high order then $F$ operates on $\left(\Phi_{r}(G), \Phi_{i . d . s}(G)\right)$ if and only if

$$
F(z)=s \exp c(f(z / r)-1) \quad(|z| \leqq r)
$$

where $c \geqq 0$ and

$$
f(z)=\sum_{n, m=0}^{\infty} a_{n, m} z^{n} z^{m} \quad(|z| \leqq 1)
$$

with

[^0]
[^0]:    ${ }^{1}$ We denote the identity element of $G$ by $e$.

