A NOTE ON FUNCTIONS WHICH OPERATE

ALAN G. KONHEIM AND BENJAMIN WEISS

Let $\mathfrak{A}, \mathscr{B}$ denote two families of functions $a, b: X \to Y$. A function $F: Z \subseteq Y \to Y$ is said to operate in $(\mathfrak{A}, \mathscr{B})$ provided that for each $a \in \mathfrak{A}$ with range $(a) \subseteq Z$ we have $F(a) \in \mathscr{B}$. Let G denote a locally compact Abelian group. In this paper we characterize the functions which operate in two cases:

(i) $\mathfrak{A} = \mathcal{O}_r(G) = \text{positive definite functions on } G$ with $\phi(e) = r$ and $\mathscr{B} = \mathcal{O}_{i.d.,s}(G) = \text{infinitely divisible positive definite functions on } G$ with $\phi(e) = s$.

(ii) $\mathfrak{A} = \mathscr{B} = \widetilde{\mathcal{P}}_1(G) = \operatorname{Log} \mathcal{P}_{i.d.,1}(G).$

The determination of the class of functions that operate in $(\mathfrak{A}, \mathfrak{B})$ for other special families may be found in references [3]-[8]. Our goal here is to extend the results of [5, 6] and, at the same time, to obtain a new derivation of the results recently announced in [3].

G will denote a locally compact Abelian group and $B^+(G)$ the family of continuous, complex-valued, nonnegative-definite functions on G. Let

$$\begin{split} & \varPhi_r(G) = \{\phi : \phi \in B^+(G) \text{ and } \phi(e) = r\}^1 \\ & \varPhi_{i.d.,r}(G) = \{\phi : \phi \in \varPhi_r(G) \text{ and } (\phi)^{1/n} \in B^+(G) \text{ for } n \ge 1\} \\ & \widetilde{\varPhi_r}(G) = \operatorname{Log} \varPhi_{i.d.,r}(G) = \{\log \phi : \phi \in \varPhi_{i.d.,r}(G)\} . \end{split}$$

In the case where G is the real line $\varphi_1(G)$ is the class of characteristic functions, $\varphi_{i.d.,1}(G)$ the class of characteristic functions corresponding to the infinitely devisible distributions while $\tilde{\varphi}_1(G)$ is the class of logarithms of this latter class whose form is well known since Levy and Khintchine.

THEOREM 1. If G has elements of arbitrarily high order then F operates on $(\Phi_r(G), \Phi_{i.d.,s}(G))$ if and only if

$$F(z) = s \exp c(f(z/r) - 1) \qquad (|z| \le r)$$

where $c \geq 0$ and

$$f(z) = \sum_{n,m=0}^{\infty} a_{n,m} z^n z^m \qquad (|z| \le 1)$$

with

¹ We denote the identity element of G by e.