CONVOLUTION OPERATORS ON $L^{p}(G)$ AND PROPERTIES OF LOCALLY COMPACT GROUPS

JOHN E. GILBERT

A locally compact group G is said to have property (R) if every continuous positive-definite function on G can be approximated uniformly on compact sets by functions of the form $s * \tilde{s}, s \in \mathscr{K}(G)$. When μ is a bounded, regular, Borel measure on G, the convolution operator T_{μ} defined by

$$(T_\mu)(s)=(\mu*s)(x)=\int_G s(y^{-1}x)d\mu(y)\;,\qquad s\in\mathscr{K}(G)\;,$$

can be extended to a bounded operator on $L^p(G)$ whose norm satisfies $||T_{\mu}||_p \leq ||\mu||$. In this paper three characterizations of property (R) are given in terms of the norm $||T_{\mu}||_p$, $1 , for specific operators <math>T_{\mu}$. From these characterizations some closely-related, but seemingly weaker properties than (R), are shown to be equivalent to (R). Examples illustrating the results are given also.

If dx denotes left-invariant Haar measure on G and $\mathscr{K}(G)$ the space of continuous, complex-valued functions with compact support on G, the Haar modulus \varDelta is defined by

$$\int_{G} s(xa^{-1})dx = \varDelta(a) \int_{G} s(x)dx$$
, $s \in \mathscr{K}(G)$.

The Haar measure of a set $A \subset G$ is written m(A). The norms on the measure algebra M(G) and on the spaces $L^{p}(G)$, $1 \leq p \leq \infty$, defined with respect to the given Haar measure, will be denoted by ||(.)||, $||(.)||_{p}$ respectively. For any space $\mathscr{D}(G)$ of functions or measures on G, the nonnegative elements in $\mathscr{D}(G)$ will be specified by $\mathscr{D}^{+}(G)$. We set $\tilde{s}(x) = \overline{s(x^{-1})}, s(x) = \overline{s(x^{-1})} \varDelta(x^{-1})$ when $s \in \mathscr{K}(G)$ and $\mu^{*}(x) = \overline{\mu(x^{-1})}$ when $\mu \in M(G)$. Since $\mu \to \mu^{*}$ is an involution on M(G), a measure μ is called hermitian if $\mu = \mu^{*}$. Following Godement ([8], see also Dixmier [5] § 13) we say that a measure $\mu \in M(G)$ is of positive type if

(1)
$$\mu(s * \tilde{s}) = \int_{\mathcal{G}} \left(\int_{\mathcal{G}} \overline{s(x^{-1}y)} s(y) dy \right) d\mu(x) \ge 0 ,$$

for all $s \in \mathcal{K}(G)$. When (.,.) denotes the usual inner product on $L^{2}(G)$, inequality (1) can be rewritten as

$$(\mu * s, s) \ge 0$$
, $s \in \mathscr{K}(G)$,

changing s to \overline{s} , i.e., μ is a positive element in the operator algebra