POINT-LIKE 0-DIMENSIONAL DECOMPOSITIONS OF S³

H. W. LAMBERT AND R. B. SHER

This paper is concerned with upper semicontinuous decompositions of the 3-sphere which have the property that the closure of the sum of the nondegenerate elements projects onto a set which is 0-dimensional in the decomposition space. It is shown that such a decomposition is definable by cubes with handles if it is point-like. This fact is then used to obtain some properties of point-like decompositions of the 3sphere which imply that the decomposition space is a topological 3-sphere. It is also shown that decompositions of the 3-sphere which are definable by cubes with one hole must be pointlike if the decomposition space is a 3-sphere.

In this paper we consider upper semicontinuous decompositions of S^3 , the Euclidean 3-sphere. In particular, we shall restrict ourselves to those decompositions G of S^3 which have the property that the union of the nondegenerate elements of G projects onto a set whose closure is 0-dimensional in the decomposition space of G. We shall refer to such decompositions as 0-dimensional decompositions of S^3 . Numerous examples of such decompositions appear in the literature. (One should note that some of the examples and results to which we refer are in E^3 , Euclidean 3-space, but the corresponding examples and results for S^3 will be obvious in each case.)

In §3, a technique of McMillan [10] is used to show that pointlike 0-dimensional decompositions of S^3 are definable by cubes with handles. Armentrout [2] has shown this in the case where the decomposition space is homeomorphic with S^3 . The proof of this theorem shows that compact proper subsets of S^3 with point-like components are definable by cubes with handles.

In §4 we give some properties of point-like 0-dimensional decompositions of S^3 which imply that the decomposition space is homeomorphic with S^3 . These properties were suggested by Bing in §7 of [6].

It is not known whether monotone 0-dimensional decompositions of S^3 which yield S^3 must have point-like elements. Partial results in this direction have been obtained by Armentrout [2], Bean [5], and Martin [9]. Bing, in §4 of [6], has presented an example of a decomposition of S^3 which yields S^3 even though it is not a point-like decomposition, but this example is not 0-dimensional. In §5 we show that a 0-dimensional decomposition of S^3 that yields S^3 must have point-like elements if it is definable by cubes with one hole.