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ON THE TETRAHEDRAL GRAPH

MARTIN AIGNER

Generalizing the concept of the triangular association
scheme, Bose and Laskar introduced the tetrahedral graph the
vertices of which are the ί g J unordered triplets selected from

n symbols with two points adjacent if and only if their corres-
ponding triplets have two symbols in common. If we let d(x, y)
denote the distance between two vertices x, y and j(x, y) the
number of vertices adjacent to both x and y, then the tetra-
hedral graph possesses the following 4 properties:

(BO) the number of vertices is ( 3 )

(Bl) it is connected and regular of degree S(n — 3)
(B2) if d(x, y) = 1 then j(x, y) = n - 2
(B3) if d(x, y) = 2 then j(x, y) = 4.
The question whether these conditions characterize tetra-

hedral graphs (no loops or parallel edges permitted) was an-
swered in the affirmative by Bose and Laskar for ^ > 16. In
the present paper characterizations of tetrahedral graphs are
derived by strengthening each one of (Bl), (B2), (B3) and these
results are utilized to prove the sufficiency of (B0)-(B3) for n=6.
(For n < 4 the problem is void, n — 4, 5 are trivial cases.)

All graphs considered in this paper are finite undirected without
loops or parallel edges. As is readily seen the line-graph G of the
complete graph with n vertices may be defined as a graph whose

vertices are the ( g ) unordered pairs taken from n symbols so that two

pairs are adjacent if and only if they have a symbol in common.
Letting d(x, y) denote the distance between x and y and A(x, y) the
number of vertices that are adjacent to both x and y, then G has the
following properties:

(AO) the number of vertices is ( o )

(Al) G is connected and regular of degree 2(n — 2).
(A2) d(x, y) = 1 implies d(x, y) = n — 2
(A3) d(x, y) — 2 implies J(x, y) = 4.
Conner [2], Shrikhande [7], Hoffman [3,4] and Li-chien [5,6]

showed that (A0)-(A3) completely characterize linegraphs of complete
graphs except for n = 8 where 3 nonisomorphic graphs satisfying (AO)-
(A3) exist. Bose and Laskar [1] took up the similar problem concerning
unordered triplets chosen from n symbols we mentioned above.

For n > 16 (B0)-(B3) characterize tetrahedral graphs as was shown
by Bose and Laskar in [1].

For n < 4 the characterization problem is meaningless.
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