ON THE TETRAHEDRAL GRAPH

Martin Aigner

Generalizing the conccpt of the triangular association scheme, Bose and Laskar introduced the tetrahedral graph the vertices of which are the $\binom{n}{3}$ unordered triplets selected from n symbols with two points adjacent if and only if their corresponding triplets have two symbols in common. If we let $d(x, y)$ denote the distance between two vertices x, y and $\Delta(x, y)$ the number of vertices adjacent to both x and y, then the tetrahedral graph possesses the following 4 properties:
(B0) the number of vertices is $\binom{n}{3}$
(B1) it is connected and regular of degree $3(n-3)$
(B2) if $d(x, y)=1$ then $\Delta(x, y)=n-2$
(B3) if $d(x, y)=2$ then $\Delta(x, y)=4$.
The question whether these conditions characterize tetrahedral graphs (no loops or parallel edges permitted) was answered in the affirmative by Bose and Laskar for $n>16$. In the present paper characterizations of tetrahedral graphs are derived by strengthening each one of (B1), (B2), (B3) and these results are utilized to prove the sufficiency of (B0)-(B3) for $n=6$. (For $n<4$ the problem is void, $n=4,5$ are trivial cases.)

All graphs considered in this paper are finite undirected without loops or parallel edges. As is readily seen the line-graph G of the complete graph with n vertices may be defined as a graph whose vertices are the $\binom{n}{2}$ unordered pairs taken from n symbols so that two pairs are adjacent if and only if they have a symbol in common. Letting $d(x, y)$ denote the distance between x and y and $\Delta(x, y)$ the number of vertices that are adjacent to both x and y, then G has the following properties:
(A0) the number of vertices is $\binom{n}{2}$
(A1) G is connected and regular of degree $2(n-2)$.
(A2) $d(x, y)=1$ implies $\Delta(x, y)=n-2$
(A3) $d(x, y)=2$ implies $\Delta(x, y)=4$.
Conner [2], Shrikhande [7], Hoffman [3, 4] and Li-chien [5, 6] showed that (A0)-(A3) completely characterize linegraphs of complete graphs except for $n=8$ where 3 nonisomorphic graphs satisfying (A0)(A3) exist. Bose and Laskar [1] took up the similar problem concerning unordered triplets chosen from n symbols we mentioned above.

For $n>16$ (B0)-(B3) characterize tetrahedral graphs as was shown by Bose and Laskar in [1].

For $n<4$ the characterization problem is meaningless.

