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ON WITTS THEOREM FOR UNIMODULAR
QUADRATIC FORMS

D. G. JAMES

In this paper we give an integral generalization of Witt's
theorem for quadratic forms. If J and K are sublattices of
a unimodular lattice L, we investigate conditions under which
an isometry from J to K will extend to an isometry of L.

Let L be a free Z-module (that is a lattice) of finite rank and
Φ:LxL—*Z a unimodular symmetric bilinear form on L. We
denote Φ(a, β) by a β, so that a β = β -a. A bijective linear
mapping <p:J—>K, where J and K are sublattices of L, is called an
isometry if φ(a) φ(β) = a β for a, β eJ. Witt's theorem concerns
the extension of such an isometry to an isometry of L (onto L).
The set of isometries of L form the orthogonal group O(L, Z) of L.

Vectors a and β in L are called orthogonal if a /3 = 0; α2

denotes α α, the norm of α. Any nonzero vector ae L may be
written as a = dβ with βe L, deZ maximal. If d = 1, a is called
primitive; d is the divisor of α. It is clear that an isometry φ of
L must leave invariant the divisors of all vectors; that is, a and
φ{a) have the same divisor.

A sublattice U of L is called primitive if all the vectors of U
which are "primitive in U" are also "primitive in L". In particular
the basis vectors of U must be primitive (in L). In considering the
extension of an isometry φ:J—>K to an isometry of L, it clearly
suffices to consider the case where J and K are primitive sublattices.

A primitive vector aeL is called characteristic if a β = β2

(mod 2) for all β e L. Again it is clear that an isometry must map
a characteristic vector into a characteristic vector.

Let r(L) and s(L) denote the rank and signature of L. Then we
shall prove the following.

THEOREM. Let φ:J—>K be an isometry between the primitive
sublattices J and K of L, where

(1) r(L) - I 8(L) I ̂  2(r(J) + 1) .

Then φ extends to an isometry of L if and only if:
a a characteristic vector *=> φ{θί) a characteristic vector {for each

a in J).

This result is a generalization of Wall [1]; in fact we shall use
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