SIMPLE MODULES AND HEREDITARY RINGS

Abraham Zaks

Abstract

The purpose of this note is to prove that if in a semiprimary ring Λ, every simple module that is not a projective Λ-module is an injective Λ-module, then Λ is a semi-primary hereditary ring with radical of square zero. In particular, if Λ is a commutative ring, then Λ is a finite direct sum of fields. If Λ is a commutative Noetherian ring then if every simple module that is not a projective module, is an injective module, then for every maximal ideal M in Λ we obtain $\operatorname{Ext}^{1}(\Lambda / M, \Lambda / M)=0$. The technique of localization now implies that $\operatorname{gl} \operatorname{dim} \Lambda=0$.

1. We say that Λ is a semi-primary ring if its Jacobson radical N is a nilpotent ideal, and $\Gamma=\Lambda / N$ is a semi-simple Artinian ring.

Throughout this note all modules (ideals) are presumed to be left modules (ideals) unless otherwise stated. For any idempotent e in Λ we denote by $N e$ the ideal $N \cap \Lambda e$.

We discuss first semi-primary rings Λ with radical N of square zero for which every simple module that is not a projective module is an injective module. We shall study the nonsemi-simple case, i.e., $N \neq 0$.

Under this assumption N becomes naturally a Γ-module.
Let e, e^{\prime} be primitive idempotents in Λ for which $e N e^{\prime} \neq 0$. In particular $N e^{\prime} \neq 0^{\cdot}$ From the exact sequence $0 \rightarrow N e^{\prime} \rightarrow \Lambda e^{\prime} \rightarrow S^{\prime} \rightarrow 0$, it follows that S^{\prime} is not a projective module since Λe^{\prime} is indecomposable. Since S^{\prime} is a simple module it follows that S^{\prime} is an injective module.

Next consider the simple module $\Lambda e / N e=S$. Since $e N e^{\prime} \neq 0$, since $N e^{\prime}$ is a Γ-module, and since on N the Γ-module structure and the Λ-module structure coincide, $N e^{\prime}$ contains a direct summand isomorphic with S. This gives rise to an exact sequence $0 \rightarrow S \rightarrow \Lambda e^{\prime} \rightarrow K \rightarrow 0$ with $K \neq 0$. If S were injective this sequence would split, and this contradicts the indecomposability of Λe^{\prime}. Therefore S is a projective module.

Hence $N e^{\prime}$ is a direct sum of projective modules, therefore $N e^{\prime}$ is a projective module. The exact sequence $0 \rightarrow N e^{\prime} \rightarrow \Lambda e^{\prime} \rightarrow S^{\prime} \rightarrow 0$ now implies l.p.dim $S^{\prime} \leqq 1$, and since S^{\prime} is not a projective module, then l.p.dim $S^{\prime}=1$.

Hence $l . p \cdot \operatorname{dim}_{\Lambda} \Gamma=1$, and this implies that Λ is an hereditary ring (i.e., l.gl.dim $\Lambda=1$) [1].

Conversely, assume that l.gl. $\operatorname{dim} \Lambda=1$. Every ideal in Λ is the direct sum of N_{1}, \cdots, N_{t} where N_{1} is contained in the radical, and

