SIMPLE MODULES AND HEREDITARY RINGS

ABRAHAM ZAKS

The purpose of this note is to prove that if in a semiprimary ring Λ , every simple module that is not a projective Λ -module is an injective Λ -module, then Λ is a semi-primary hereditary ring with radical of square zero. In particular, if Λ is a commutative ring, then Λ is a finite direct sum of fields. If Λ is a commutative Noetherian ring then if every simple module that is not a projective module, is an injective module, then for every maximal ideal M in Λ we obtain $\operatorname{Ext}^1(\Lambda/M, \Lambda/M) = 0$. The technique of localization now implies that gl.dim $\Lambda = 0$.

1. We say that Λ is a semi-primary ring if its Jacobson radical N is a nilpotent ideal, and $\Gamma = \Lambda/N$ is a semi-simple Artinian ring.

Throughout this note all modules (ideals) are presumed to be left modules (ideals) unless otherwise stated. For any idempotent e in Λ we denote by Ne the ideal $N \cap \Lambda e$.

We discuss first semi-primary rings Λ with radical N of square zero for which every simple module that is not a projective module is an injective module. We shall study the nonsemi-simple case, i.e., $N \neq 0$.

Under this assumption N becomes naturally a Γ -module.

Let e, e' be primitive idempotents in Λ for which $eNe' \neq 0$. In particular $Ne' \neq 0$. From the exact sequence $0 \rightarrow Ne' \rightarrow \Lambda e' \rightarrow S' \rightarrow 0$, it follows that S' is not a projective module since $\Lambda e'$ is indecomposable. Since S' is a simple module it follows that S' is an injective module.

Next consider the simple module $\Delta e/Ne = S$. Since $eNe' \neq 0$, since Ne' is a Γ -module, and since on N the Γ -module structure and the Λ -module structure coincide, Ne' contains a direct summand isomorphic with S. This gives rise to an exact sequence $0 \rightarrow S \rightarrow \Lambda e' \rightarrow K \rightarrow 0$ with $K \neq 0$. If S were injective this sequence would split, and this contradicts the indecomposability of $\Lambda e'$. Therefore S is a projective module.

Hence Ne' is a direct sum of projective modules, therefore Ne' is a projective module. The exact sequence $0 \rightarrow Ne' \rightarrow Ae' \rightarrow S' \rightarrow 0$ now implies $l.p.\dim S' \leq 1$, and since S' is not a projective module, then $l.p.\dim S' = 1$.

Hence $l.p.dim_{\Lambda} \Gamma = 1$, and this implies that Λ is an hereditary ring (i.e., $l.gl.dim \Lambda = 1$) [1].

Conversely, assume that $l.gl.dim \Lambda = 1$. Every ideal in Λ is the direct sum of N_1, \dots, N_t where N_1 is contained in the radical, and