THE INTEGRATION OF A LIE ALGEBRA REPRESENTATION

J. Tits and L. Waelbroeck

Let $u: G \rightarrow A$ be a differentiable representation of a Lie group into a b-algebra. The differential $u_{0}=d u_{e}$ of u at the neutral element e of G is a representation of the Lie algebra g of G into A. Because a Lie group is locally the union of one-parameter subgroups and since the infinitesimal generator of a differentiable (multiplicative) sub-semi-group of A determines this sub-semi-group, the representation u_{0} determines u if G is connected.

We shall be concerned with the converse: given a representation u_{0} of g, when can it be obtained by differentiating a representation u of G ? We shall assume G connected and simply connected, which means that we are only interested in the local aspect of the problem.

Call $a \in A$ integrable if a differentiable $r: R \rightarrow A$ can be found such that $r(s+t)=r(s) r(t)$ and $r^{\prime}(0)=a$. We can only hope to integrate $u_{0}: \mathfrak{g} \rightarrow A$ to a differentiable $u: G \rightarrow A$ if $u_{0} x$ is integrable for all $x \in \mathfrak{g}$. We shall prove the

Theorem. The set \mathfrak{h} of all elements $x \in \mathfrak{g}$ such that $u_{0} x$ is integrable, is a Lie subalgebra of g ; the representation u_{0} can be integrated to a representation $u: G \rightarrow A$ of the simply connected group G if and only if $\mathfrak{h}=\mathfrak{g}$.

This result is "best possible" in the following sense:

Proposition 1. Given a real Lie algebra \mathfrak{g} and a subalgebra \mathfrak{h}, there exists a representation $u_{0}: \mathfrak{g} \rightarrow A$ of \mathfrak{g} in a b-algebra A, so that

$$
\mathfrak{h}=\left\{x \in \mathfrak{g} \mid u_{0} x \text { is integrable }\right\} .
$$

As a consequence of the theorem, we have the following result: Let x, y be two integrable elements of a b-algebra, and assume that the Lie algebra \mathfrak{g} they generate is finite-dimensional. Then all elements of \mathfrak{g} are integrable.

We cannot drop the assumption that \mathfrak{g} is finite-dimensional. There exists a b-algebra which contains integrable elements x, y such that neither $x+y$ nor $x y-y x$ is integrable.

Elementary properties of b-spaces and b-algebras can be found in [2] or [3]. Differentiable mappings into such spaces are investigated

