THE INTEGRATION OF A LIE ALGEBRA REPRESENTATION

J. TITS AND L. WAELBROECK

Let $u: G \to A$ be a differentiable representation of a Lie group into a b-algebra. The differential $u_0 = du_e$ of u at the neutral element e of G is a representation of the Lie algebra g of G into A. Because a Lie group is locally the union of one-parameter subgroups and since the infinitesimal generator of a differentiable (multiplicative) sub-semi-group of A determines this sub-semi-group, the representation u_0 determines uif G is connected.

We shall be concerned with the converse: given a representation u_0 of g, when can it be obtained by differentiating a representation u of G? We shall assume G connected and simply connected, which means that we are only interested in the local aspect of the problem.

Call $a \in A$ integrable if a differentiable $r: \mathbb{R} \to A$ can be found such that r(s + t) = r(s)r(t) and r'(0) = a. We can only hope to integrate $u_0: g \to A$ to a differentiable $u: G \to A$ if u_0x is integrable for all $x \in g$. We shall prove the

THEOREM. The set \mathfrak{h} of all elements $x \in \mathfrak{g}$ such that $u_0 x$ is integrable, is a Lie subalgebra of \mathfrak{g} ; the representation u_0 can be integrated to a representation $u: G \to A$ of the simply connected group G if and only if $\mathfrak{h} = \mathfrak{g}$.

This result is "best possible" in the following sense:

PROPOSITION 1. Given a real Lie algebra g and a subalgebra \mathfrak{h} , there exists a representation $u_0: \mathfrak{g} \to A$ of g in a b-algebra A, so that

$$\mathfrak{h} = \{x \in \mathfrak{g} \mid u_0 x \text{ is integrable}\}$$
.

As a consequence of the theorem, we have the following result: Let x, y be two integrable elements of a *b*-algebra, and assume that the Lie algebra g they generate is finite-dimensional. Then all elements of g are integrable.

We cannot drop the assumption that g is finite-dimensional. There exists a b-algebra which contains integrable elements x, y such that neither x + y nor xy - yx is integrable.

Elementary properties of b-spaces and b-algebras can be found in [2] or [3]. Differentiable mappings into such spaces are investigated