A REMARK ON INTEGRAL FUNCTIONS OF SEVERAL COMPLEX VARIABLES

Kyong T. Hahn

Let $R_{\nu}, \nu=$ I, II, III, IV, be the 4 types of the classical Cartan domains and let $\mathscr{E}\left(R_{\nu}\right)$ denote the class of solutions u of the Laplace's equation $\Delta u=0$ corresponding to the Bergman metric of R_{ν} which satisfy certain regularity conditions specified below.

In this note we give a distortion theorem for functions which are holomorphic in \bar{R}_{ν} and omit the value 0 there, and an application which leads to an interesting property of integral functions omitting the value 0 . The tools used here are the generalized Harnack inequality for functions in the class $\mathscr{C}\left(R_{\nu}\right)$ and the classical theorem of Liouville for integral functions.

Let D be a bounded domain in the space C^{p} of p complex variables $z=\left(z^{1}, \cdots, z^{p}\right)$. The Laplace-Beltrami operator corresponding to the Bergman metric of D is

$$
\begin{equation*}
\Delta_{D}=T^{\alpha \bar{\beta}} \partial^{2} / \partial z^{\alpha} \partial \bar{z}^{\beta} ; \tag{1}
\end{equation*}
$$

here $T^{\alpha \bar{\beta}}$ are the contravariant components of the metric tensor $T_{\alpha \bar{\beta}}=\partial^{2} \log K_{D} / \partial z^{\alpha} \partial \bar{z}^{\beta}$ and $K_{D}=K_{D}(z, \bar{z})$ is the Bergman kernel function of $D[1]$. Let $\mathscr{E}(D)$ be the class of real functions u satisfying: (a) u is continuous in \bar{D}. (b) In $\bar{D}-\boldsymbol{b}(D), u$ is of C^{2} and satisfies $\Delta_{D} u=0$, where $\boldsymbol{b}(D)$ is the Bergman-Šilov boundary of D. It is well-known that the class $\mathscr{E}(D)$ solves the Dirichlet problems for certain types of bounded symmetric domains D ([3], [4]). These are the classical Cartan domains. Let z be a matrix of complex entries, z^{\prime} its transpose, z^{*} its conjugate transpose and I the identity matrix. By $H>0$ we mean that a hermitian matrix H is positive definite. The first 3 types are defined by $R_{\nu}=\left[z: I-z z^{*}>0\right], \nu=$ I, II, III, where z is an $m \times n$ matrix $(m \leqq n)$ for R_{I}, an $n \times n$ symmetric matrix for $R_{\text {II }}$ and an $n \times n$ skew symmetric matrix for $R_{\text {III }}$. The fourth type R_{IV} is the set of all $1 \times n$ matrices satisfying the conditions:

$$
1+\left|z z^{\prime}\right|^{2}-2 z z^{*}>0,\left|z z^{\prime}\right|<1
$$

or

$$
1>\bar{z} z^{\prime}+\left[\left(\bar{z} z^{\prime}\right)^{2}-\left|z z^{\prime}\right|^{2}\right]^{1 / 2}
$$

By $\|z\|_{\nu}$ we denote the norm of the matrix $z \in R_{\nu}$, i.e., $\|z\|_{\nu}=$ $\sup _{|x|=1}|z x|$, where x is an n-dimensional vector and $|x|$ the length

