A REMARK ON INTEGRAL FUNCTIONS OF SEVERAL COMPLEX VARIABLES

KYONG T. HAHN

Let R_{ν} , $\nu = I$, II, III, IV, be the 4 types of the classical Cartan domains and let $\mathscr{C}(R_{\nu})$ denote the class of solutions u of the Laplace's equation $\Delta u = 0$ corresponding to the Bergman metric of R_{ν} which satisfy certain regularity conditions specified below.

In this note we give a distortion theorem for functions which are holomorphic in \overline{R}_{ν} and omit the value 0 there, and an application which leads to an interesting property of integral functions omitting the value 0. The tools used here are the generalized Harnack inequality for functions in the class $\mathcal{C}(R_{\nu})$ and the classical theorem of Liouville for integral functions.

Let D be a bounded domain in the space C^{p} of p complex variables $z = (z^{1}, \dots, z^{p})$. The Laplace-Beltrami operator corresponding to the Bergman metric of D is

(1)
$$\Delta_D = T^{\alpha \overline{\beta}} \partial^2 / \partial z^{\alpha} \partial \overline{z}^{\beta} ;$$

here $T^{\alpha\overline{\beta}}$ are the contravariant components of the metric tensor $T_{lphaareta}=\partial^2\log K_{\scriptscriptstyle D}/\partial z^lpha\partial \overline{z}^eta$ and $K_{\scriptscriptstyle D}=K_{\scriptscriptstyle D}(z,\overline{z})$ is the Bergman kernel function of D[1]. Let $\mathcal{C}(D)$ be the class of real functions u satisfying: (a) u is continuous in \overline{D} . (b) In $\overline{D} - b(D)$, u is of C^2 and satisfies $\Delta_D u = 0$, where b(D) is the Bergman-Šilov boundary of D. It is well-known that the class $\mathscr{C}(D)$ solves the Dirichlet problems for certain types of bounded symmetric domains D([3], [4]). These are the classical Cartan domains. Let z be a matrix of complex entries, z' its transpose, z^* its conjugate transpose and I the identity matrix. By H > 0 we mean that a hermitian matrix H is positive definite. The first 3 types are defined by $R_{\nu} = [z: I - zz^* > 0], \nu = I, II, III,$ where z is an $m \times n$ matrix $(m \leq n)$ for R_1 , an $n \times n$ symmetric matrix for R_{II} and an n imes n skew symmetric matrix for R_{III} . The fourth type R_{iv} is the set of all $1 \times n$ matrices satisfying the conditions:

$$1+|\mathit{zz'}|^{\scriptscriptstyle 2}-2\mathit{zz}^{*}>0$$
 , $|\mathit{zz'}|<1$,

or

$$1 > ar{z} z' + [(ar{z} z')^2 - |\, z z'\,|^2]^{1/2}$$
 .

By $||z||_{\nu}$ we denote the norm of the matrix $z \in R_{\nu}$, i.e., $||z||_{\nu} = \sup_{|x|=1} |zx|$, where x is an n-dimensional vector and |x| the length