SIMULTANEOUS INTERPOLATION IN H_{2}, II

J. T. Rosenbaum

Let $\left\{z_{n}\right\}$ denote a fixed sequence of complex numbers in the unit disc satisfying $\left(1-\left|z_{n+1}\right|^{2}\right) /\left(1-\left|z^{n}\right|^{2}\right) \leqq \delta<1$ for some δ. Let M be a nonnegative integer, and let m be generic for integers between 0 and M inclusive. We define the linear functionals $L_{n}^{[m]}$ on H_{2} by $L_{n}^{[m]} f=f^{(m)}\left(z_{n}\right)$. Given $M+1$ sequences $w^{[0]}, \cdots, w^{[M]}$ in l_{2}, can there be found a function f in H_{2} which solves the simultaneous weighted interpolation problem

$$
f^{(m)}\left(z_{n}\right)=\left(w^{[m]}\right)_{n}\left\|L_{n}^{[m]}\right\| ?
$$

Shapiro and Shields considered this problem for $M=0$. Their results were generalized by the author to the case $M=1$. The purpose of this paper is to extend this generalization to arbitrary M.

The technique which we used for $M=1$ would suggest that to proceed to arbitrary M, we should let $w^{[0]}, \cdots, w^{[M]}$ be prescribed in l_{2} and then try to find f_{0}, \cdots, f_{M} in H_{2} satisfying

$$
\left\{\begin{array}{l}
f_{m}^{(m)}\left(z_{n}\right)=\left(w^{[m]}\right)_{n}\left\|L_{n}{ }^{[m]}\right\| \tag{A}\\
f_{m}^{(i)}\left(z_{n}\right)=0 \quad(0 \leqq i \leqq M, i \neq m)
\end{array}\right.
$$

Then, $f_{0}+\cdots+f_{M}$ could serve as the desired interpolating function. However, the computational difficulties which would be involved in such a program can be glimpsed even in the case $M=1$. We found the following modification to be effective.

The work of Shapiro and Shields assures us that we can interpolate when $M=0$. Fixing M and assuming the result for lesser values, let $w^{[0]}, \cdots, w^{[M]}$ be chosen from l_{2}. The induction hypothesis furnishes us with a function f_{M-1} corresponding to $w^{[0]}, \cdots, w^{[M-1]}$. We would like to alter f_{M-1} by finding a function g_{M-1} in H_{2} for which the sum $f_{M} \equiv f_{M-1}+g_{M-1}$, together with its first M derivatives, assumes appropriate values on $\left\{z_{n}\right\}$. This is equivalent to demanding that

$$
\left\{\begin{array}{l}
g_{M-1}^{(M)}\left(z_{n}\right)=\left[\left(w^{[M]}\right)_{n}-\left\|L_{n}^{[M]}\right\|^{-1} f_{M-1}^{[M)}\left(z_{n}\right)\right]\left\|L_{n}^{[M]}\right\| \\
g_{M-1}^{\prime m)}\left(z_{n}\right)=0 \quad(m<M) .
\end{array}\right.
$$

By proving that the quantity in brackets is in l_{2}, we reduce the problem to that of finding a function g, once m and $w^{[m]}$ have been prescribed, which satisfies

$$
\left\{\begin{array}{l}
g^{(m)}\left(z_{n}\right)=\left(w^{[m]}\right)_{n}\left\|L_{n}^{[m]}\right\| \tag{B}\\
g^{(i)}\left(z_{n}\right)=0 \quad(i<m) .
\end{array}\right.
$$

