FELLER BOUNDARY INDUCED BY A TRANSITION OPERATOR

S. P. LLOYD

A transition operator T is a nonnegative contraction on an AL space L such that $||T\mu|| = ||\mu||$ for $\mu \ge 0$. The set $\mathcal{M} = \{f \in L^*: T^*f = f\}$ of invariant functions of the adojoint T^* turns out to be lattice isomorphic to C(B) for a certain hyperstonian compact Hausdorff B. For the transition operator of a countable state Markov chain, B is the Feller boundary of the process, and in the general case we call B the Feller boundary induced by T. For the general case we exhibit several Markov processes associated with T such that B appears as a subset of the state space. These processes involve the potential theory of T^* . When L is separable there is a quotient space B_0 of B and a measure μ_0 with B_0 as closed support such that \mathcal{M} is isomorphic to $L_{\infty}(B_0,\mu_0)$. There is also a Markov process whose paths converge to B_0 with probability 1. However, we do not obtain the kernel representation of superharmonic functions as with the Martin-Doob boundary.

The Feller boundary. Let L be an AL space (abstract l2. space [3, Ch. VI]) and let T be a bounded linear operator on L with the properties $T \ge 0$, $||T\mu|| = ||\mu||$ for $\mu \ge 0$, so that ||T|| = 1. When L is a space of measures our conditions are that T transform probabilities into probabilities. As we will see, there are various discrete parameter Markov processes associated with T such that T induces the transition probabilities of the Markov processes, and we call T a transition operator. Let M be the Banach space conjugate of L, so that M is an AM space with order unit. The adjoint T^* is an operator on M such that $T^* \ge 0$, $T^*1 = 1$, $||T^*|| = 1$. Let \mathcal{L} be the subspace of L consisting of the invariant vectors $\mu = T\mu$ of T, and let \mathcal{M} be the subspace of M consisting of the invariant vectors $f = T^*f$ of T^* . We will see that \mathscr{M} corresponds to the space of invariant (or harmonic or regular or concordant) functions of a Markov process, while \mathcal{L} corresponds to a certain closed subspace of the invariant measures of the process. We will be concerned mainly with \mathcal{M} .

Let X be the (Kakutani) space of lattice homomorphisms of Monto the reals, with the topology induced by M, so that M is isometrically linearly and lattice isomorphic to real C(X) on hyperstonian compact Hausdorff X. From now on we identify M with C(X). We represent M^* as the space rca (X) of regular bounded signed Borel measures on X. For each $\nu \in \text{rca}(X)$, $\mathscr{S}(\nu)$ will denote the closed support of ν . We denote by $\kappa: L \to \text{rca}(X)$ the natural injection of L into its second