ON (J, M, m)-EXTENSIONS OF ORDER SUMS OF DISTRIBUTIVE LATTICES

Raymond Balbes

In the first section of this paper a characterization of the order sum of a family $\left\{L_{\alpha}\right\}_{\alpha \in S}$ of distributive lattices is given which is analogous to the characterization of a free distributive lattice as one generated by an independent set. We then consider the collection Q of order sums obtained by taking different partial orderings on S. A natural partial ordering is defined on Q and its maximal and minimal elements are characterized.

Let J and M be collections of nonempty subsets of a distributive lattice L, and m a cardinal. We define a (J, M, \mathfrak{m}) extension (ψ, E) of L, where E is a \mathfrak{m}-complete distributive lattice and $\psi: L \rightarrow E$ is a (J, M)-monomorphism. In the last section we define a m-order sum of a family of distributive lattices $\left\{L_{\alpha}\right\}_{\alpha \in S}$. The main result here is that the \mathfrak{m}-order sum exists if the order sum L of $\left\{L_{\alpha}\right\}_{\alpha \in S}$ has a (J, M, \mathfrak{m})-extension, where J and M are certain collections of subsets of L. These results are analogous to R. Sikorski's work in Boolean algebras (e.g., [6]).

1. Order sums. Let S be a fixed set and $\left\{L_{\alpha}\right\}_{\alpha \in S}$ a fixed collection of distributive lattices. From [2] it follows that for each poset $P=(S, \leqq)$, there exists a pair $\left(\left\{\varphi_{a}\right\}_{\alpha \in S}, L(P)\right)$, where $L(P)$ is a distributive lattice, and for each $\alpha \in S, \varphi_{\alpha}: L_{\alpha} \rightarrow L(P)$ is a monomorphism such that:
(1.1) L is generated by $\cup_{\alpha \in S} \varphi_{\alpha}\left(L_{\alpha}\right)$.
(1.2) If $\alpha<\beta$ then $\varphi_{\alpha}(x)<\varphi_{\beta}(y)$, for all $x \in L_{\alpha}$ and $y \in L_{\beta}$.
(1.3) If M is a distributive lattice and $\left\{f_{\alpha}: L_{\alpha} \rightarrow M\right\}_{\alpha \in S}$ is a family of homomorphisms such that $f_{\alpha}(x) \leqq f_{\beta}(y)$ whenever $\alpha<\beta$, $x \in L_{\alpha}$ and $y \in L_{\beta}$, then there exists a homomorphism $f: L(P) \rightarrow M$ such that $f \varphi_{\alpha}=f_{\alpha}$ for each $\alpha \in S$.

The pair $\left(\left\{\varphi_{\alpha}\right\}_{\alpha \in S}, L(P)\right)$ will be called an order sum of $\left\{L_{\alpha}\right\}_{\alpha \in S}$ over P.

Let P be the family of all posets of the form (S, \leqq) and let $Q=\left\{\left(\left\{\varphi_{\alpha}\right\}_{\alpha \in S}, L(P)\right) \mid P \in \boldsymbol{P}\right\}$. For $\left(\left\{\varphi_{\alpha}\right\}_{\alpha \in S}, L(P)\right)$ and $\left(\left\{\theta_{\alpha}\right\}_{\alpha \in S}, L\left(P^{\prime}\right)\right)$ in Q we write
(1.4) $\quad\left(\left\{\varphi_{\alpha}\right\}_{\alpha \in S}, L(P)\right) \leqq\left(\left\{\theta_{\alpha}\right\}_{\alpha \in S}, L\left(P^{\prime}\right)\right)$ provided:
(1.5) there is a homomorphism $f: L\left(P^{\prime}\right) \rightarrow L(P)$ such that $f \theta_{\alpha}=$ φ_{α} for each $\alpha \in S$.

Note that (1.5) implies f is an epimorphism. If f is an isomor-

