ON (J, M, m)-EXTENSIONS OF ORDER SUMS OF DISTRIBUTIVE LATTICES

RAYMOND BALBES

In the first section of this paper a characterization of the order sum of a family $\{L_{\alpha}\}_{\alpha \in S}$ of distributive lattices is given which is analogous to the characterization of a free distributive lattice as one generated by an independent set. We then consider the collection Q of order sums obtained by taking different partial orderings on S. A natural partial ordering is defined on Q and its maximal and minimal elements are characterized.

Let J and M be collections of nonempty subsets of a distributive lattice L, and m a cardinal. We define a (J, M, m)extension (ψ, E) of L, where E is a m-complete distributive lattice and $\psi: L \to E$ is a (J, M)-monomorphism. In the last section we define a m-order sum of a family of distributive lattices $\{L_{\alpha}\}_{\alpha \in S}$. The main result here is that the m-order sum exists if the order sum L of $\{L_{\alpha}\}_{\alpha \in S}$ has a (J, M, m)-extension, where J and M are certain collections of subsets of L. These results are analogous to R. Sikorski's work in Boolean algebras (e.g., [6]).

1. Order sums. Let S be a fixed set and $\{L_{\alpha}\}_{\alpha \in S}$ a fixed collection of distributive lattices. From [2] it follows that for each poset $P = (S, \leq)$, there exists a pair $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P))$, where L(P) is a distributive lattice, and for each $\alpha \in S$, $\varphi_{\alpha} : L_{\alpha} \to L(P)$ is a monomorphism such that:

(1.1) L is generated by $\bigcup_{\alpha \in S} \varphi_{\alpha}(L_{\alpha})$.

(1.2) If $\alpha < \beta$ then $\varphi_{\alpha}(x) < \varphi_{\beta}(y)$, for all $x \in L_{\alpha}$ and $y \in L_{\beta}$.

(1.3) If M is a distributive lattice and $\{f_{\alpha}: L_{\alpha} \to M\}_{\alpha \in S}$ is a family of homomorphisms such that $f_{\alpha}(x) \leq f_{\beta}(y)$ whenever $\alpha < \beta$, $x \in L_{\alpha}$ and $y \in L_{\beta}$, then there exists a homomorphism $f: L(P) \to M$ such that $f_{\varphi_{\alpha}} = f_{\alpha}$ for each $\alpha \in S$.

The pair $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P))$ will be called an order sum of $\{L_{\alpha}\}_{\alpha \in S}$ over P.

Let P be the family of all posets of the form (S, \leq) and let $Q = \{(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P)) \mid P \in P\}$. For $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P))$ and $(\{\theta_{\alpha}\}_{\alpha \in S}, L(P'))$ in Q we write

(1.4) $(\{\varphi_{\alpha}\}_{\alpha \in S}, L(P)) \leq (\{\theta_{\alpha}\}_{\alpha \in S}, L(P'))$ provided:

(1.5) there is a homomorphism $f: L(P') \to L(P)$ such that $f\theta_{\alpha} = \varphi_{\alpha}$ for each $\alpha \in S$.

Note that (1.5) implies f is an epimorphism. If f is an isomor-