ON UNICITY OF CAPACITY FUNCTIONS

Akio Osada

Sario's capacity function of a closed subset γ of the ideal boundary is known to be unique if γ is of positive capacity. The present paper will determine the number of capacity functions of γ in terms of the Heins harmonic dimension when γ has zero capacity, under the assumption that γ is isolated. This includes the special case where γ is the ideal boundary.

1. Capacity functions. Denote by β the ideal boundary of an open Riemann surface R in the sense of Kerékjártó-Stoïlow. We consider a fixed nonempty closed subset $\gamma \subset \beta$ which is *isolated* from $\delta = \beta - \gamma$. Throughout this paper D will denote a fixed parametric disk about a fixed point $\zeta \in R$ with a fixed local parameter z and the uniqueness is always referred to this fixed triple (ζ, D, z) . Here we do not exclude the case where $\gamma = \beta$.

For a regular region $\Omega \supset \overline{D}$ we denote by γ_{Ω} the part of $\partial \Omega$ which is "homologous" to γ . The remainder $\delta_{\Omega} = \partial \Omega - \gamma_{\Omega}$ consists of a finite number of analytic Jordan curves $\delta_{\Omega j}$. For a regular exhaustion $\{R_n\}_{n=0}^{\infty}$ with $R_0 \supset \overline{D}$ and nonempty γ_{R_0} , set $\gamma_n = \gamma_{R_n}$ and $\delta_{nj} = \delta_{R_n j}$. Then there exists a unique function $p_{r_n} \in H(R_n - \zeta)$ satisfying

(a) $p_{\gamma_n} \mid D = \log \mid z - \zeta \mid + h_n(z)$ with $h_n \in H(\overline{D})$ and $h_n(\zeta) = 0$,

(b) $p_{\gamma_n} | \gamma_n = k_n(\gamma)$ (const.) and $p_{\gamma_n} | \delta_{nj} = d_{nj}$ (const.) so that $\int_{\delta_{nj}} *dp_{\gamma_n} = 0$, which is called a capacity function of γ_n (Sario [6]). It is known that $k_n(\gamma)$ increases with n and the limit $k(\gamma)$ is independent of the choice of $\{R_n\}_{n=0}^{\infty}$. We call $e^{-k(\gamma)}$ the capacity of γ and denote it by cap γ . When cap $\gamma > 0$, p_{γ_n} converges to a functions p_{γ} , which is independent of the choice of $\{p_{\gamma_n}\}$ which is independent of the choice of the exhaustion (Sario [6]). Even when cap $\gamma = 0$, we can also choose a subsequence of $\{p_{\gamma_n}\}$ which converges to a function p_{γ} . Such functions p_{γ} will be called capacity functions of γ (Sario [6]). As mentioned above there exists only one capacity function when cap $\gamma > 0$.

It is the purpose of this paper to determine the number of capacity functions p_{γ} when cap $\gamma = 0$.

2. The harmonic dimension of γ . Let R, β, γ and δ be as in 1. Furthermore we suppose that γ is of zero capacity. For a regular region $\Omega \supset \overline{D}$ we denote by V_{α_i} components of $R - \overline{\Omega}$ whose derivations are contained in γ and by W_{α_j} the remaining components. Here an ideal boundary component will be called a derivation of V_{α_i} when it is contained in the closure of V_{α_i} in the compactification of R. Here-