TORSION IN BBSO

JAMES D. STASHEFF

The cohomology of BBSO, the classifying space for the stable Grassmanian BSO, is shown to have torsion of order precisely 2^r for each natural number r. Moreover, the elements of order 2^r appear in a pattern of striking simplicity.

Many of the stable Lie groups and homogeneous spaces have torsion at most of order 2 [1, 3, 5]. There is one such space, however, with interesting torsion of higher order. This is BBSO = SU/Spinwhich is of interest in connection with Bott periodicity and in connection with the J-homomorphism [4, 7]. By the notation SU/Spin we mean that BBSO can be regarded as the fibre of B Spin $\rightarrow BSU$ or that, up to homotopy, there is a fibration

 $SU \rightarrow BBSO \rightarrow B$ Spin

induced from the universal SU bundle by B Spin $\rightarrow BSU$. The mod 2 cohomology $H^*(BBSO; \mathbb{Z}_2)$ has been computed by Clough [4]. The purpose of this paper is to compute enough of $H^*(BBSO; \mathbb{Z})$ to obtain the mod 2 Bockstein spectral sequence [2] of BBSO.

Given a ring R, we shall denote by $R[x_i | i \in I]$ the polynomial ring on generators x_i indexed by elements of a set I. The set I will often be described by an equation or inequality in which case i is to be understood to be a natural number. Similarly $E(x_i | i \in I)$ will denote the exterior algebra on generators x_i . In this case, we will need only $R = Z_2$.

Let us recall the results on B Spin as given by Thomas [6] and on BBSO as given by Clough [4].

$$H^*(B\operatorname{Spin}; Z_2) pprox Z_2[w_i \,|\, i
eq 2^j+1]$$

where w_i is (the image of) the Stiefel-Whitney class w_i .

$$H^*(B\operatorname{Spin};Z) pprox Z[Q_i \mid i > 0] \oplus \widehat{T}$$

where $2\hat{T}=0$ and $Q_i \in H^{_{4i}}$.

$$H^*(BBSO; Z_2) \approx E(e_i \mid i \geq 3)$$

where $e_i \in H^i$ and is the image of w_i if $i \neq 2^j + 1$ while $e_{2^{j+1}}$ maps to an indecomposable element in $H^*(SU; Z_2)$.

Now let $_{\beta}E_r$ denote the mod 2 Bockstein spectral sequence of BBSO [2]. In particular, $_{\beta}E_2 = \text{Ker } Sq^1/\text{Im } Sq^1$. Now $Sq^1w_{2i} = w_{2i+1}$ in BSO and $Sq^1w_{2i+1} = 0$ while $Sq^1e_{2i} = 0$ in B Spin. We will see that