ON THE BOUNDARY CORRESPONDENCE OF QUASICONFORMAL MAPPINGS OF DOMAINS BOUNDED BY QUASICIRCLES

TERENCE J. REED

A Jordan curve \mathscr{L} is a quasicircle if there exists a constant $C(1 \leq C < \infty)$ such that the cross ratio (z_1, z_2, z_3, z_4) of any four points z_1, \dots, z_4 in order on \mathscr{L} satisfies $|(z_1, z_2, z_3, z_4)| \leq C$. It is shown that the boundary correspondence f induced by a quasiconformal homeomorphism of two Jordan domains bounded by quasicircles satisfies $|(w_1, w_2, w_3, w_4)| \leq A |(z_1, z_2, z_3, z_4)|^{\alpha}$, $(A \geq 1, 0 < \alpha \leq 1)$ where $w_k = f(z_k)$ and the points are in order on the boundary. A converse to this result is proved and estimates are computed in each direction.

DEFINITION 1. A Jordan curve \mathscr{L} is called a C-quasicircle $(1 \leq C < \infty)$ if

$$(1) |(z_1, z_2, z_3, z_4)| < C$$

for any four points z_1, \dots, z_4 in order on \mathcal{L} .

Since cross ratios are invariant under Möbius transformations we will assume without loss of generality from now on that \mathscr{L} contains ∞ whence we may assume $z_4 = \infty$ so that (1) becomes $|(z_1, z_2, z_3)| \leq C$ or more graphically,

$$(1)'$$
 $|z_1 - z_2| \leq C |z_1 - z_3|$.

This definition and the observation of the importance of these curves to the theory of quasiconformal mappings are due to Ahlfors [1].

DEFINITION 2. (a) We will say that a homeomorphism f of a Cquasicircle \mathscr{L} onto a Jordan curve \mathscr{L}' is (A, α) -upper quasisymmetric, $A \ge 1, 0 < \alpha \le 1$ $(A, \alpha \text{ constants})$ if

$$|(2)| |(w_1, w_2, w_3, w_4)| \leq A |(z_1, z_2, z_3, z_4)|^a$$

for any four points z_1 , z_2 , z_3 , z_4 in order on \mathscr{L} and where $w_k = f(z_k)$, k = 1, 2, 3, 4.

(b) If we replace (2) by

$$(3) B | (z_1, z_2, z_3, z_4) |^{\beta} \leq | w_1, w_2, w_3, w_4) |$$

under the same conditions and for some constants B and $\beta, \beta \ge 1$, $0 < B \le 1$ then we will call $f(B, \alpha)$ -lower quasisymmetric.