ON THE BOUNDARY CORRESPONDENCE OF QUASICONFORMAL MAPPINGS OF DOMAINS BOUNDED BY QUASICIRCLES

Terence J. Reed

Abstract

A Jordan curve \mathscr{C} is a quasicircle if there exists a constant $C(1 \leqq C<\infty)$ such that the cross ratio $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ of any four points z_{1}, \cdots, z_{4} in order on \mathscr{L} satisfies $\left|\left(z_{1}, z_{2}, z_{3}, z_{4}\right)\right| \leqq C$. It is shown that the boundary correspondence f induced by a quasiconformal homeomorphism of two Jordan domains bounded by quasicircles satisfies $\left|\left(w_{1}, w_{2}, w_{3}, w_{4}\right)\right| \leqq A\left|\left(z_{1}, z_{2}, z_{3}, z_{4}\right)\right|^{\alpha}$, ($A \geqq 1,0<\alpha \leqq 1$) where $w_{k}=f\left(z_{k}\right)$ and the points are in order on the boundary. A converse to this result is proved and estimates are computed in each direction.

Definition 1. A Jordan curve \mathscr{L} is called a C-quasicircle $(1 \leqq C<\infty)$ if

$$
\begin{equation*}
\left|\left(z_{1}, z_{2}, z_{3}, z_{4}\right)\right|<C \tag{1}
\end{equation*}
$$

for any four points z_{1}, \cdots, z_{4} in order on \mathscr{L}.

Since cross ratios are invariant under Möbius transformations we will assume without loss of generality from now on that \mathscr{L} contains ∞ whence we may assume $z_{4}=\infty$ so that (1) becomes $\left|\left(z_{1}, z_{2}, z_{3}\right)\right| \leqq C$ or more graphically,

$$
\begin{equation*}
\left|z_{1}-z_{2}\right| \leqq C\left|z_{1}-z_{3}\right| . \tag{1}
\end{equation*}
$$

This definition and the observation of the importance of these curves to the theory of quasiconformal mappings are due to Ahlfors [1].

Definition 2. (a) We will say that a homeomorphism f of a C quasicircle \mathscr{L} onto a Jordan curve \mathscr{L}^{\prime} is (A, α)-upper quasisymmetric, $A \geqq 1,0<\alpha \leqq 1$ (A, α constants) if

$$
\begin{equation*}
\left|\left(w_{1}, w_{2}, w_{3}, w_{4}\right)\right| \leqq A\left|\left(z_{1}, z_{2}, z_{3}, z_{4}\right)\right|^{\alpha} \tag{2}
\end{equation*}
$$

for any four points $z_{1}, z_{2}, z_{3}, z_{4}$ in order on \mathscr{L} and where $w_{k}=f\left(z_{k}\right)$, $k=1,2,3,4$.
(b) If we replace (2) by

$$
\begin{equation*}
\left.B\left|\left(z_{1}, z_{2}, z_{3}, z_{4}\right)\right|^{3} \leqq \mid w_{1}, w_{2}, w_{3}, w_{4}\right) \mid \tag{3}
\end{equation*}
$$

under the same conditions and for some constants B and $\beta, \beta \geqq 1$, $0<B \leqq 1$ then we will call $f(B, \alpha)$-lower quasisymmetric.

