A NOTE ON RECURSIVELY DEFINED ORTHOGONAL POLYNOMIALS

Daniel P. Maki

Abstract

Let $\left\{a_{i}\right\}_{i=0}^{\infty}$ and $\left\{b_{i}\right\}_{i=0}^{\infty}$ be real sequences and suppose the b_{i}, \mathbf{s} are all positive. Define a sequence of polynomials $\left\{P_{i}(x)\right\}_{i=0}^{\infty}$ as follows: $P_{0}(x)=1, P_{1}(x)=\left(x-a_{0}\right) / b_{0}$, and for $n \geqq 1$ $$
\begin{equation*} b_{n} P_{n+1}(x)=\left(x-a_{n}\right) P_{n}(x)-b_{n-1} P_{n-1}(x) . \tag{*} \end{equation*}
$$

Favard showed that the polynomials $\left\{P_{\imath}(x)\right\}$ are orthonormal with respect to a bounded increasing function ψ defined on $(-\infty,+\infty)$. This note generalizes recent constructive results which deal with connections between the two sequences $\left\{a_{\imath}\right\}$ and $\left\{b_{i}\right\}$ and the spectrum of ψ. (The spectrum of ψ is the set $S(\psi)=\{\lambda: \psi(\lambda+\varepsilon)-\psi(\lambda-\varepsilon)>0$ for all $\varepsilon>0\}$.) It is shown that if $b_{i} \rightarrow 0$ then every limit point of the sequence $\left\{a_{i}\right\}$ is in $S(\psi)$.

2. Preliminaries. In order to use theorems from functional analysis, consider the space $\mathscr{L}^{2}(\psi)=\left\{f: \int_{-\infty}^{+\infty} f^{2} d \psi<\infty\right\}$. This is a Hilbert space where the inner product is gived by $(f, g)=\int f g d \psi$ and where we identify all functions which agree on $S(\psi)$. In [2], (p. 215), Carleman showed that the condition $\sum 1 / \sqrt{\overline{b_{i}}}=\infty$ implies that when ψ is normalized to be continuous from the left and to have $\psi(-\infty)=0, \psi(+)=1$, then it is unique. In [6], M. Riesz showed that if ψ is essentially unique then Parseval's relation holds for the orthonormal set $\left\{P_{i}\right\}$ in the space $\mathscr{L}^{2}(\psi)$. Hence the set $\left\{P_{i}\right\}$ is dense in this space.

We now make the assumption that $\lim b_{i}=0$. Combining the Carleman result and the Riesz result we see that ψ is essentially unique and the polynomials $\left\{P_{i}\right\}$ are a dense set in $\mathscr{L}^{2}(\psi)$. Using this information we define an operator A on a dense subset of $\mathscr{L}^{2}(\psi)$. The domain of A is the set of all functions f which are in $\mathscr{L}^{2}(\psi)$ and for which $x f$ is also in $\mathscr{L}^{2}(\psi)$. We take A to be the self-adjoint operator defined by $(A f)(x)=x f(x)$. By inspection of $(*)$ we see that for $i=1,2,3, \cdots$ we have

$$
\begin{equation*}
A\left(P_{i}\right)=b_{i-1} P_{i-1}+a_{i} P_{i}+b_{i} P_{i+1} \tag{**}
\end{equation*}
$$

We call A the operator associated with the sequences $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$.
3. Theorems. Let $\sigma(A)$ be the spectrum of the operator A, i.e., all points λ where $A-\lambda I$ does not have a bounded inverse. Then we have the following:

