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Necessary and sufficient conditions are obtained on a

function G of bounded variation such that φ( \x(t)dG(t)) S
[ \) )
\φ(x(t))dG(t) for all increasing x for which x(f0) = 0 for some

specified U, and all convex φ for which φ(0) — 0; the conditions
are otherwise independent of φ and x. Similar results are
obtained when the inequality is reversed. Necessary and
sufficient conditions for both directions of inequality are also
obtained when φ is starshaped and φ(0) = 0.

The relationship to previous results is sketched. Appli-
cations to statistical tolerance limits are indicated.

Several inequalities are known that give necessary and sufficient
conditions for a signed measure μ to satisfy

(1.1)

for all functions φ in a given convex cone. For example, such results
were obtained by Hardy, Littlewood and Pόlya [7] for the cone of
convex functions, and by Karlin and Novikoff [9], Ziegler [17] and
Karlin and Studden [10] for cones of generalized convex functions.

By changing variables in such a result, it is easy to obtain con-
ditions on μ in order that

^ 0

for all φ in the given convex cone, where x is an increasing function.
Generally speaking the conditions so obtained depend upon the function
x. In some applications, x is replaced by a random function (see
Barlow and Proschan [1]). Inequalities are thus required which will
hold for essentially all possible realizations of the random function,
so that those obtained via a change of variables, like (1.2), are not
useful.

In this paper, we consider only measures μ which are the difference
between a measure v and the measure which has unit mass concentrated

at the point \x(t)dv(t). Consequently, all the inequalities that we

obtain have either the form

(1.3) φ(\x(t)dv(t)) ^ \φ{x{t))dv{t)
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