INITIAL SEGMENTS OF ONE-ONE DEGREES

A. H. LACHLAN

Let 0 be the one-one degree consisting of the infinite recursive sets whose complements are also infinite. In this paper are studied initial segments of the one-one degrees ≥ 0 . A characterization is stated of the order types of those initial segments with greatest member which are at the same time initial segments of the many-one degrees. It is shown that any finite initial segment with greatest member is a lattice, and that any finite recursively enumerable initial segment with greatest member is a distributive lattice.

According to the usual definition of one-one reducibility a set of natural numbers A is one-one reducible to a set of natural numbers B written $A \leq_1 B$ if there is a one-one recursive function ρ such that $\rho^{-1}(B) = A$. The relation of one-one equivalence \equiv_1 defined by

 $A \equiv_{1} B \Leftrightarrow [A \leq_{1} B \text{ and } B \leq_{1} A]$

is an equivalence relation, and the equivalence classes into which it partitions the sets of natural numbers are called one-one degrees. The natural ordering of these degrees induced by \leq_1 is denoted by \leq . In this paper we shall be wholly concerned with the one-one degrees ≥ 0 . Notice that if A has one-one degree ≥ 0 then neither A nor its complement is immune. In this context it is convenient to adopt a new definition of one-one reducibility: we say that A is one-one reducible to a set of natural numbers B, again written $A \leq B$, if there exists a one-one partial recursive (p.r.) function ρ such that dom ρ (the domain of ρ) and $A \cup \operatorname{dom} \rho$ are both recursive, and such that $\rho^{-1}(B) =$ $A \cap \operatorname{dom} \rho$. On sets whose one-one degrees in the old sense are ≥ 0 the new definition of \leq_1 is the same as the old. Also, for any set A there is a set B whose one-one degree in the old sense is ≥ 0 , and such that $A \equiv_1 B$ in the new sense. Thus adopting this new definition leaves the one-one degrees ≥ 0 unchanged, and suppresses the remaining one-one degrees.

We adopt the usual definition of many-one reducibility save that \emptyset , N (the set of all natural numbers) are both by convention in the zero many-one degree consisting of all recursive sets.

The only notations likely to be unfamiliar consist in writing $A \bigoplus B$ for the set $\{2x \mid x \in A\} \cup \{2x+1 \mid x \in B\}$, A' for the complement of A, and rng ρ for the range of ρ .

1. Common initial segments of the many-one and one-one degrees. In [3] we obtained a characterization of the isomorphism