INITIAL SEGMENTS OF ONE-ONE DEGREES

A. H. Lachlan

Abstract

Let 0 be the one-one degree consisting of the infinite recursive sets whose complements are also infinite. In this paper are studied initial segments of the one-one degrees $\geqq 0$. A characterization is stated of the order types of those initial segments with greatest member which are at the same time initial segments of the many-one degrees. It is shown that any finite initial segment with greatest member is a lattice, and that any finite recursively enumerable initial segment with greatest member is a distributive lattice.

According to the usual definition of one-one reducibility a set of natural numbers A is one-one reducible to a set of natural numbers B written $A \leqq{ }_{1} B$ if there is a one-one recursive function ρ such that $\rho^{-1}(B)=A$. The relation of one-one equivalence \equiv_{1} defined by

$$
A \equiv_{1} B \hookrightarrow\left[A \leqq_{1} B \quad \text { and } \quad B \leqq_{1} A\right]
$$

is an equivalence relation, and the equivalence classes into which it partitions the sets of natural numbers are called one-one degrees. The natural ordering of these degrees induced by \leqq_{1} is denoted by \leqq. In this paper we shall be wholly concerned with the one-one degrees $\geqq 0$. Notice that if A has one-one degree $\geqq 0$ then neither A nor its complement is immune. In this context it is convenient to adopt a new definition of one-one reducibility: we say that A is one-one reducible to a set of natural numbers B, again written $A \leqq_{1} B$, if there exists a one-one partial recursive (p.r.) function ρ such that dom ρ (the domain of ρ) and $A \cup \operatorname{dom} \rho$ are both recursive, and such that $\rho^{-1}(B)=$ $A \cap \operatorname{dom} \rho$. On sets whose one-one degrees in the old sense are $\geqq \mathbf{0}$ the new definition of \leqq_{1} is the same as the old. Also, for any set A there is a set B whose one-one degree in the old sense is $\geqq \mathbf{0}$, and such that $A \equiv{ }_{1} B$ in the new sense. Thus adopting this new definition leaves the one-one degrees $\geqq 0$ unchanged, and suppresses the remaining one-one degrees.

We adopt the usual definition of many-one reducibility save that \varnothing, N (the set of all natural numbers) are both by convention in the zero many-one degree consisting of all recursive sets.

The only notations likely to be unfamiliar consist in writing $A \oplus B$ for the set $\{2 x \mid x \in A\} \cup\{2 x+1 \mid x \in B\}, A^{\prime}$ for the complement of A, and rng ρ for the range of ρ.

1. Common initial segments of the many-one and one-one degrees. In [3] we obtained a characterization of the isomorphism
