POWER SERIES RINGS OVER A KRULL DOMAIN

Robert Gilmer

Abstract

Let D be a Krull domain and let $\left\{X_{\lambda}\right\}_{\lambda \in A}$ be a set of indeterminates over D. This paper shows that each of three ' rings of formal power series in $\left\{X_{\lambda}\right\}$ over D "' are also Krull domains; also, some relations between the structure of the set of minimal prime ideals of D and the set of minimal prime ideals of these rings of formal power series are established.

In considering formal power series in the X_{λ} 's over D, there are three rings which arise in the literature and which are of importance. We denote these here by $D\left[\left[\left\{x_{\lambda}\right\}\right]\right]_{1}, D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{2}$, and $D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{3} . \quad D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{1}$ arises in a way analogous to that of $D\left[\left\{X_{\lambda}\right\}\right]$-namely, $D\left[\left[\left\{X_{\lambda}\right\}\right]\right]$ is defined to be $\bigcup_{F \in \mathscr{F}} D[[F]]$, where \mathscr{F} is the family of all finite nonempty subsets of Λ. $D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{2}$ is defined to be

$$
\left\{\sum_{i=0}^{\infty} f_{i} \mid f_{i} \in D\left[\left\{X_{\lambda}\right\}\right], f_{i}=0 \text { or a form of degree } i\right\}
$$

where equality, addition, and multiplication are defined on $D\left[\left[\left\{x_{\lambda}\right]\right]_{2}\right.$ in the obvious ways. $D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{2}$ arises as the completion of $D\left[\left\{X_{\lambda}\right\}\right]$ under the ($\left\{X_{\lambda}\right\}$)-adic topology; the topology on $D\left[\left[\left\{X_{\lambda}\right]\right]_{2}\right.$ is induced by the decreasing sequence $\left\{A_{i}\right\}_{0}^{\infty}$ of ideals, where A_{i} consists of those formal power series of order $\geqq i$-that is, those of the form $\sum_{j=i}^{\infty} f_{j}$. If Λ is infinite, A_{1} properly contains the ideal of $D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{2}$ generated by $\left\{X_{\lambda}\right\}$. Finally, $D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{3}$ is the full ring of formal power series over D, and is defined as follows (cf. [1, p. 66]): Let N be the set of nonnegative integers, considered as an additive abelian semigroup, and let S be the weak direct sum of N with itself $|\Lambda|$ times. S is an additive abelian semigroup with the property that for any $s \in S$, there are only finitely many pairs (t, u) of elements of S whose sum is s. $D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{3}$ is defined to be the set of all functions $f: S \rightarrow$ D, where $(f+g)(s)=f(s)+g(s)$ and where $(f g)(s)=\sum_{t+u=s} f(t) g(u)$ for any $s \in S$, the notation $\sum_{t+u=s}$ indicating that the sum is taken over all ordered pairs (t, u) of elements of S with sum s. To within isomorphism we have $D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{1} \subseteq D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{2} \subseteq D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{3}$, and each of these containments is proper if and only if Λ is infinite. Our method of attack in showing that $D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{i}, i=1,2,3$, is a Krull domain if D is consists in showing that $D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{3}$ is a Krull domain and that $D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{3} \cap K_{i}=D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{i}$ for $i=1,2$, where K_{i} denotes the quotient field of $D\left[\left[\left\{X_{i}\right\}\right]\right]_{i}$.

1. The proof that $D\left[\left[\left\{X_{\lambda}\right\}\right]\right]_{3}$ is a Krull domain. Using the
