POWER SERIES RINGS OVER A KRULL DOMAIN

ROBERT GILMER

Let D be a Krull domain and let $\{X_{\lambda}\}_{\lambda \in A}$ be a set of indeterminates over D. This paper shows that each of three "rings of formal power series in $\{X_{\lambda}\}$ over D" are also Krull domains; also, some relations between the structure of the set of minimal prime ideals of D and the set of minimal prime ideals of these rings of formal power series are established.

In considering formal power series in the X_{λ} 's over D, there are three rings which arise in the literature and which are of importance. We denote these here by $D[[\{x_{\lambda}\}]]_{1}$, $D[[\{X_{\lambda}\}]]_{2}$, and $D[[\{X_{\lambda}\}]]_{3}$. $D[[\{X_{\lambda}\}]]_{1}$ arises in a way analogous to that of $D[\{X_{\lambda}\}]$ —namely, $D[[\{X_{\lambda}\}]]$ is defined to be $\bigcup_{F \in \mathscr{F}} D[[F]]$, where \mathscr{F} is the family of all finite nonempty subsets of Λ . $D[[\{X_{\lambda}\}]]_{2}$ is defined to be

$$\left\{\sum\limits_{i=0}^{\infty}f_i \ | \ f_i \in D[\{X_{\lambda}\}], \ f_i=0 \ ext{or a form of degree} \ i
ight\}$$
 ,

where equality, addition, and multiplication are defined on $D[[\{x_{\lambda}\}]_2]$ in the obvious ways. $D[[{X_{\lambda}}]]_2$ arises as the completion of $D[{X_{\lambda}}]$ under the $({X_{\lambda}})$ -adic topology; the topology on $D[[{X_{\lambda}}]]_2$ is induced by the decreasing sequence $\{A_i\}_0^{\infty}$ of ideals, where A_i consists of those formal power series of order $\geq i$ —that is, those of the form $\sum_{j=i}^{\infty} f_j$. If Λ is infinite, A_1 properly contains the ideal of $D[[{X_{\lambda}}]]_2$ generated by $\{X_{\lambda}\}$. Finally, $D[[\{X_{\lambda}\}]]_{\beta}$ is the *full* ring of formal power series over D, and is defined as follows (cf. [1, p. 66]): Let N be the set of nonnegative integers, considered as an additive abelian semigroup, and let S be the weak direct sum of N with itself |A| times. S is an additive abelian semigroup with the property that for any $s \in S$, there are only finitely many pairs (t, u) of elements of S whose sum is s. $D[[{X_{i}}]]_{3}$ is defined to be the set of all functions $f: S \rightarrow J$ D, where (f + g)(s) = f(s) + g(s) and where $(fg)(s) = \sum_{t+u=s} f(t)g(u)$ for any $s \in S$, the notation $\sum_{t+u=s}$ indicating that the sum is taken over all ordered pairs (t, u) of elements of S with sum s. To within isomorphism we have $D[[\{X_{\lambda}\}]]_1 \subseteq D[[\{X_{\lambda}\}]]_2 \subseteq D[[\{X_{\lambda}\}]]_3$, and each of these containments is proper if and only if Λ is infinite. Our method of attack in showing that $D[[{X_i}]]_i$, i = 1, 2, 3, is a Krull domain if D is consists in showing that $D[[{X_{\lambda}}]]_{3}$ is a Krull domain and that $D[[{X_{\lambda}}]]_{3} \cap K_{i} = D[[{X_{\lambda}}]]_{i}$ for i = 1, 2, where K_{i} denotes the quotient field of $D[[\{X_{\lambda}\}]]_i$.

1. The proof that $D[[{X_{\lambda}}]]_{3}$ is a Krull domain. Using the