BEST CONSTANTS IN A CLASS OF INTEGRAL INEQUALITIES

David W. Boyd

$$
\begin{aligned}
& \text { In this paper a method is developed for determining best } \\
& \text { constants in inequalities of the following form: } \\
& \qquad \int_{a}^{b}|y|^{p}\left|y^{(n)}\right|^{q} w(x) d x \leqq K\left\{\int_{a}^{b}\left|y^{(n)}\right|^{r} m(x) d x\right\}^{(p+q) / r} \\
& \text { where } y(a)=y^{\prime}(a)=\cdots=y^{(n-1)}(a)=0 \text { and } y^{(n-1)} \text { is absolutely } \\
& \text { continuous. } \\
& \text { It is first shown that for a certain class of } m \text { and } w \text {, } \\
& \text { equality can be attained in the inequality. Applying variational } \\
& \text { techniques reduces the determination of the best constant to } \\
& \text { a nonlinear eigenvalue problem for an integral operator. If } \\
& m \text { and } w \text { are sufficiently smooth this reduces further to a } \\
& \text { boundary value problem for a differential equation. The method } \\
& \text { is illustrated by determining the best constants in case }(a, b) \\
& \text { is a finite interval, } m(x) \equiv w(x) \equiv 1 \text {, and } n=1 \text {. }
\end{aligned}
$$

A number of special cases of the inequality have been studied but usually without obtaining best constants. An exception to this is the case $n=1, q=0, p=r$ which was studied very thoroughly by Beesack [1], who gave a direct method for determining best constants. The method of [1] was modified by Boyd and Wong [5] to apply to the case $n=1, q=1, r=p+1$. Recently Beesack and Das [2] obtained constants for the case $n=1, r=p+q$ but these were not in general best possible.

We shall state our result only for $n=1$ although it will be clear that the analogous result for $n>1$ is valid. In our closing remarks we indicate a number of other inequalities to which the method of this paper applies.

1. Preliminaries. Throughout we assume that p, q, r, a, b are real numbers satisfying $p>0, r>1,0 \leqq q<r$ and $-\infty \leqq a<b \leqq \infty$. The functions m and w are measurable and positive almost everywhere. We write $d \mu(x)=m(x) d x$ and

$$
\|f\|_{s}=\left\{\int_{a}^{b}|f|^{s} d \mu\right\}^{1 / s} \quad \text { for } \quad 0<s<\infty .
$$

The space L_{m}^{s} is the set of functions with $\|f\|_{s}<\infty$, with the usual identification. We shall use the notation $f_{n} \rightarrow f$ if $\left\|f_{n}-f\right\|_{s} \rightarrow 0$, and if $s \geqq 1$ so L_{m}^{s} is a Banach space, we write $f_{n} \xrightarrow{w} f$ for weak convergence in L_{m}^{s}. We denote the dual of L_{m}^{s} by $L_{m}^{s^{\prime}}$ so for $s>1, s^{\prime}=s /(s-1)$.

We shall consider integral operators of the type

