SOME RENEWAL THEOREMS CONCERNING A SEQUENCE OF CORRELATED RANDOM VARIABLES

G. SANKARANARAYANAN AND C. SUYAMBULINGOM

Consider a sequence $\{x_n\}$, $n = 1, 2, \cdots$ of random variables. Let $F_n(x)$ be the distribution function of $S_n = \sum_{k=1}^n x_k$ and $H_n(x)$, the distribution function of $M_n = \max_{1 \le k \le n} S_k$. Here we study the asymptotic behaviour of

1.1
$$\sum_{n=1}^{\infty} a_n G_n(x)$$
,

where $G_n(x)$ is to mean either $F_n(x)$ or $H_n(x)$ (so that if a property holds for both $F_n(x)$ and $H_n(x)$ it holds for $G_n(x)$ and conversely) and $\{a_n\}$ a suitable positive term sequence, when $\{x_n\}$ form

(i) a sequence of dependent random variables such that the correlation between x_i and x_j is $\rho, i \neq j, i, j = 1, 2, \cdots$, $0 < \rho < 1, E(x_i) = \mu_i, i = 1, 2, \cdots$ and

1.2
$$\lim_{n\to\infty}\frac{\mu_1+\mu_2+\cdots+\mu_n}{n^{\alpha}}=\mu, \alpha>1, 0<\mu<\infty$$

and

(ii) a sequence of identically distributed random variables with $E(x_i) = \mu$, $i = 1, 2, \cdots$ such that the correlation between x_i and x_j is $\rho_{ij} = \rho^{|i-j|}$, $i, j = 1, 2, \cdots, 0 < \rho < 1$.

Suitable examples are worked out to illustrate the general theory.

Let N(x) be the first value of n such that $S_n \ge x$, x > 0. N(x) is a random variable and let

1.3
$$H(x) = E\{N(x)\}$$

H(x) is called the renewal function and much research work has been done with reference to the study of the asymptotic behaviour of H(x)as $x \to \infty$. Feller has shown that

1.4
$$\lim_{x\to\infty} H(x)/x = 1/\mu$$
,

when $\{x_n\}$ form a sequence of independent and identically distributed random variables with $\mu = E(x_n), 0 < \mu < \infty$, the limit being interpreted as zero when $\mu = \infty$. Blackwell has generalised the above, by considering the renewal process N(x, h) which denotes the number of renewals occuring in the interval (x, x + h]. He has shown that, for any fixed h, (h > 0), if